A Hamilton-Jacobi Approach for Asymptotic Propagation Shape of a Road-field Model

Xingri Geng

National University of Singapore

Nov 04, 2022

Overview

[Motivations](#page-2-0)

[History](#page-29-0)

- 3 [Effective Problem](#page-35-0)
- 4 [Variational Inequality](#page-45-0)
- 5 [Optimal Control](#page-53-0)
- 6 [Phase Function](#page-63-0)

[Ongoing](#page-69-0)

4 0 3

÷,

×

ă.

• Population growth with a road.

 \leftarrow

• Road is narrow, and field is large;

- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate. \bullet
- Thus cumbersome and difficult to solve the "full model" ;
- hard to see the effects of the road.

Resolution : Think of the road as a widthless line and then impose suitable conditions on it.

 \leftarrow

- Road is narrow, and field is large;
- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate. \bullet
- Thus cumbersome and difficult to solve the "full model" ;
- hard to see the effects of the road.

- Road is narrow, and field is large;
- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate.
- Thus cumbersome and difficult to solve the "full model";
- hard to see the effects of the road.

- Road is narrow, and field is large;
- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate.
- Thus cumbersome and difficult to solve the "full model";
- hard to see the effects of the road.

- Road is narrow, and field is large;
- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate.
- Thus cumbersome and difficult to solve the "full model";
- hard to see the effects of the road.

- Road is narrow, and field is large;
- diffusion rate is large on road, small in field.
- Multi-scales in both spatial variable and diffusion rate.
- Thus cumbersome and difficult to solve the "full model";
- hard to see the effects of the road.

- \bullet the road has no width a line;
- no reproduction on the line;
- exchange between the line and the field;
- \bullet symmetry w.r.t. the y direction.

- \bullet the road has no width a line;
- no reproduction on the line;
- exchange between the line and the field;
- \bullet symmetry w.r.t. the y direction.

- \bullet the road has no width a line;
- no reproduction on the line;
- exchange between the line and the field;
- \bullet symmetry w.r.t. the y direction.

- \bullet the road has no width a line;
- no reproduction on the line;
- exchange between the line and the field;
- \bullet symmetry w.r.t. the y direction.

- \bullet the road has no width a line;
- no reproduction on the line;
- exchange between the line and the field;
- symmetry w.r.t. the y direction.

Motivation

Berestycki, Roquejoffre and Rossi¹ proposed the following system

$$
\begin{cases}\nu_t - Du_{xx} = \nu v(x, 0, t) - \mu u, & x \in \mathbb{R}, t > 0, \\
v_t - \Delta v = v(1 - v), & (x, y) \in \mathbb{R}^2_+, t > 0, \\
-dv_y(x, 0, t) = \mu u - \nu v(x, 0, t), & x \in \mathbb{R}, t > 0.\n\end{cases}
$$

- $u:$ line density of species on the line.
- $v:$ area density of species in the field.
	- The asymptotic speed of spreading $c_* = c_{KPP} = 2$ if $D \leq 2$; $c_* > 2$ if $D > 2$ and $c_* = O(\sqrt{D})$ as $D \to \infty$;

and

 $\lim_{x \to a} \sup (u(x, y, t), v(x, y, t)) = (0, 0) \text{ for any } c > c_*,$ $t\rightarrow\infty$ $|x|\geq ct$ $\lim_{x \to a} \sup (u(x, y, t), v(x, y, t)) = (1/\mu, 1) \text{ for any } 0 < c < c_*.$ $t\rightarrow\infty$ |x| $\leq ct$

1. J. Math. Biol., 2013

Motivation

Berestycki, Roquejoffre and Rossi¹ proposed the following system

$$
\begin{cases}\nu_t - Du_{xx} = \nu v(x, 0, t) - \mu u, & x \in \mathbb{R}, t > 0, \\
v_t - \Delta v = v(1 - v), & (x, y) \in \mathbb{R}^2_+, t > 0, \\
-dv_y(x, 0, t) = \mu u - \nu v(x, 0, t), & x \in \mathbb{R}, t > 0.\n\end{cases}
$$

 $u:$ line density of species on the line. $v:$ area density of species in the field.

The asymptotic speed of spreading $c_* = c_{KPP} = 2$ if $D \leq 2$; $c_* > 2$ if $D > 2$ and $c_* = O(\sqrt{D})$ as $D \to \infty$;

and

$$
\lim_{t \to \infty} \sup_{|x| \ge ct} (u(x, y, t), v(x, y, t)) = (0, 0)
$$
 for any $c > c_*$,
\n
$$
\lim_{t \to \infty} \sup_{|x| \le ct} (u(x, y, t), v(x, y, t)) = (1/\mu, 1)
$$
 for any $0 < c < c_*$.

1. J. Math. Biol., 2013

Motivation

Berestycki, Roquejoffre and Rossi¹ proposed the following system

$$
\begin{cases}\nu_t - Du_{xx} = \nu v(x, 0, t) - \mu u, & x \in \mathbb{R}, t > 0, \\
v_t - \Delta v = v(1 - v), & (x, y) \in \mathbb{R}^2_+, t > 0, \\
-dv_y(x, 0, t) = \mu u - \nu v(x, 0, t), & x \in \mathbb{R}, t > 0.\n\end{cases}
$$

 $u:$ line density of species on the line.

 $v:$ area density of species in the field.

The asymptotic speed of spreading $c_* = c_{KPP} = 2$ if $D \leq 2$; $c_* > 2$ if $D > 2$ and $c_* = O(\sqrt{D})$ as $D \to \infty$;

• and

$$
\lim_{t \to \infty} \sup_{|x| \ge ct} (u(x, y, t), v(x, y, t)) = (0, 0)
$$
 for any $c > c_*$,

$$
\lim_{t \to \infty} \sup_{|x| \le ct} (u(x, y, t), v(x, y, t)) = (1/\mu, 1)
$$
 for any $0 < c < c_*$.

1. J. Math. Biol., 2013

A different model by using the idea of "effective boundary conditions"².

• Start with the full model;

- send $\delta \rightarrow 0$, and prove the solution of full model converges, then get the "effective model"(limiting model) with "effective boundary condition"(EBC) imposed on x−axis.
- The multiple scales are all gone in the effective model.

2. H. Li and X. Wang, Nonlinearity, 2017

A different model by using the idea of "effective boundary conditions"².

- Start with the full model;
- send $\delta \rightarrow 0$, and prove the solution of full model converges, then get the "effective model"(limiting model) with "effective boundary condition"(EBC) imposed on x−axis.

• The multiple scales are all gone in the effective model.

2. H. Li and X. Wang, Nonlinearity, 2017

A different model by using the idea of "effective boundary conditions"².

- Start with the full model;
- send $\delta \rightarrow 0$, and prove the solution of full model converges, then get the "effective model"(limiting model) with "effective boundary condition"(EBC) imposed on x −axis.
- The multiple scales are all gone in the effective model .

2. H. Li and X. Wang, Nonlinearity, 2017

The full model :

$$
\begin{cases}\n u_t - \nabla \cdot (\tilde{\sigma} \nabla u) = u(1 - u), & (x, y) \in \mathbb{R}^2, t > 0, \\
 u(x, y, 0) = \varphi(x, y), & (x, y) \in \mathbb{R}^2, \\
 0 \le \varphi \le 1, & \varphi \not\equiv 0, \varphi \text{ compactly supported}\n\end{cases}
$$

$$
\tilde{\sigma} = \begin{cases} \sigma, & \text{if } y \in (0, \delta), \\ 1, & \text{else.} \end{cases}
$$

The cases of $\sigma \ge O(1)$ and $\sigma = o(1)$ are studied.

• Remark : The Berestycki-Roquejoffre-Rossi model can also be derived by using the idea of effective boundary conditions from a different full model.

The full model :

$$
\begin{cases}\n u_t - \nabla \cdot (\tilde{\sigma} \nabla u) = u(1 - u), & (x, y) \in \mathbb{R}^2, t > 0, \\
 u(x, y, 0) = \varphi(x, y), & (x, y) \in \mathbb{R}^2, \\
 0 \le \varphi \le 1, & \varphi \not\equiv 0, \varphi \text{ compactly supported}\n\end{cases}
$$

where

$$
\tilde{\sigma} = \begin{cases} \sigma, & \text{if } y \in (0, \delta), \\ 1, & \text{else.} \end{cases}
$$

The cases of $\sigma \ge O(1)$ and $\sigma = o(1)$ are studied.

• Remark : The Berestycki-Roquejoffre-Rossi model can also be derived by using the idea of effective boundary conditions from a different full model.

 \leftarrow

The full model :

$$
\begin{cases}\n u_t - \nabla \cdot (\tilde{\sigma} \nabla u) = u(1 - u), & (x, y) \in \mathbb{R}^2, t > 0, \\
 u(x, y, 0) = \varphi(x, y), & (x, y) \in \mathbb{R}^2, \\
 0 \le \varphi \le 1, & \varphi \not\equiv 0, \varphi \text{ compactly supported}\n\end{cases}
$$

where

$$
\tilde{\sigma} = \begin{cases} \sigma, & \text{if } y \in (0, \delta), \\ 1, & \text{else.} \end{cases}
$$

The cases of $\sigma \ge O(1)$ and $\sigma = o(1)$ are studied.

• Remark : The Berestycki-Roquejoffre-Rossi model can also be derived by using the idea of effective boundary conditions from a different full model.

Theorem

 $\forall T \in (0, \infty), u \to v \text{ in } C([0, T], L^2_{loc}(\mathbb{R}^2)) \text{ as } \delta \to 0, \text{ where } v \text{ satisfies }$

$$
v_t = \Delta v + v(1 - v), \ y \neq 0, \ t > 0,
$$

the same initial condition but the following EBC on x-axis.

 \leftarrow

^{3.} H. Li and X. Wang, Nonlinearity, 2017

EBC with Large σ

 \leftarrow \Box \rightarrow ∢母 ×

 \equiv **B**

× ×. È

EBC with Small σ

As δ → 0 EBC on y = 0 σ ^δ → 0 v − ^y = v + ^y = 0 σ ^δ → b ∈ (0, ∞) v + ^y = v − y , v − ^y = b(v ⁺ − v −) σ ^δ → ∞, σ → 0 v ⁺ = v [−], v + ^y = v − y

A natural question : what is the asymptotic propagation speed and shape of the effective model with the boundary condition

$$
v^+ = v^-, v_y^- - v_y^+ = av_{xx}^+ \quad ?
$$

- Answered by X.F. Chen, J.F. He, and X.F. Wang⁴.
- A Hamilton-Jacobi approach for asymptotic propagation speed and

4. The asymptotic propagation speed of the Fisher-KPP equation with effective 4 ロ ト ィ *ロ* ト ィ $2Q$ A natural question : what is the asymptotic propagation speed and shape of the effective model with the boundary condition

$$
v^+ = v^-, v_y^- - v_y^+ = av_{xx}^+ \quad ?
$$

- Answered by X.F. Chen, J.F. He, and X.F. Wang⁴.
- A Hamilton-Jacobi approach for asymptotic propagation speed and

^{4.} The asymptotic propagation speed of the Fisher-KPP equation with effective boundary condition on a road, preprint 4 0 8 $2Q$

A natural question : what is the asymptotic propagation speed and shape of the effective model with the boundary condition

$$
v^+ = v^-, v_y^- - v_y^+ = av_{xx}^+ \quad ?
$$

- Answered by X.F. Chen, J.F. He, and X.F. Wang⁴.
- A Hamilton-Jacobi approach for asymptotic propagation speed and shape.

^{4.} The asymptotic propagation speed of the Fisher-KPP equation with effective boundary condition on a road, preprint 4.000 $2Q$

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of

 \bullet

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of

 \bullet

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of

 \bullet

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of

 \bullet

4 0 8

 \rightarrow \overline{m} \rightarrow \rightarrow

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of

 \bullet

- In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear reaction-diffusion equations.
- In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied wavefront propagation for reaction-diffusion systems.
- In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species Lotka-Volterra competition-diffusion system.
- In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species competition system.
- In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of dispersal.

 \bullet ...

The effective problem :

$$
\begin{cases}\nu_t - \Delta u = u(1 - u), & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket u \rrbracket = 0, \llbracket u_y \rrbracket = -2au_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\
u(x, y, 0) = u_0(x, y), & (x, y) \in \mathbb{R}^2,\n\end{cases}
$$
\n(1.1)

where

$$
[\![u]\!]:=u(x,0+,t)-u(x,0-,t)
$$

and $0 \leq \varphi \leq 1$, $\varphi \not\equiv 0$, φ compactly supported.

Question : what is the asymptotic propagation speed and shape of this model ?
The effective problem :

$$
\begin{cases}\nu_t - \Delta u = u(1 - u), & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket u \rrbracket = 0, \llbracket u_y \rrbracket = -2au_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\
u(x, y, 0) = u_0(x, y), & (x, y) \in \mathbb{R}^2,\n\end{cases}
$$
\n(1.1)

4 0 8

where

$$
[\![u]\!]:=u(x,0+,t)-u(x,0-,t)
$$

and $0 \leq \varphi \leq 1$, $\varphi \not\equiv 0$, φ compactly supported.

Question : what is the asymptotic propagation speed and shape of this model ?

 $2Q$

Asymptotic speed and shape

Theorem

For each $\nu \in (0,1)$,

$$
\lim_{t \to \infty} ||u(\cdot, t)||_{L^{\infty}(\Omega^{c}(t))} = 0, \quad \lim_{t \to \infty} ||u(\cdot, t) - 1||_{L^{\infty}(\Omega(t))} = 0,
$$
\nwhere $\Omega(t) = t\Omega(1)$ and $\Omega(1) = \{(x, y) | \varphi^{*}(x, y, 1) < 1\},$ \n
$$
\varphi^{*}(x, y, t) := \min_{s \geq 0} \left\{ \frac{x^{2}}{4(t + as)} + \frac{(|y| + s)^{2}}{4t} \right\}.
$$

Inspired by L. C. Evans⁵ and Souganidis⁶, consider the following rescaling

$$
u^{\varepsilon}(x, y, t) = u\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}, \frac{t}{\varepsilon}\right),
$$

where $u^{\varepsilon}(x, y, t)$ satisfies

$$
\begin{cases}\n u_t^{\varepsilon} = \varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} u^{\varepsilon} (1 - u^{\varepsilon}), & x \in \mathbb{R}, y \neq 0, t > 0, \\
 [u^{\varepsilon}] = 0, [u_y^{\varepsilon}] = -2a\varepsilon u_{xx}^{\varepsilon}, & x \in \mathbb{R}, y = 0, t > 0, \\
 u^{\varepsilon}(x, y, 0) = u_0^{\varepsilon}(x/\varepsilon, y/\varepsilon) := g^{\varepsilon}(x, y), & (x, y) \in \mathbb{R}^2.\n\end{cases}
$$
\n(1.2)

- 5. Indiana Univ. Math, 1989
- 6. Springer, Berlin, Heidelberg, 1997

Xingri Geng [A Hamilton-Jacobi Approach](#page-0-0) Nov 04, 2022 16/35

Lemma (1)

There exists a constant C independent of $\varepsilon > 0$, such that

 $0 < u^{\varepsilon} \leq C.$

and

$$
\lim_{\varepsilon \to 0} \sup \quad u^{\varepsilon} \le 1
$$

locally uniformly in $\mathbb{R}^2 \times \mathbb{R}_+$.

The phase function

Perform the logarithmic transformation⁷: $v^{\varepsilon} = -\varepsilon \log u^{\varepsilon}$.

 v^{ε} satisfies the following Hamilton-Jacobi equation :

$$
\begin{cases}\nv_t^{\varepsilon} - \varepsilon \Delta v^{\varepsilon} + |\nabla v^{\varepsilon}|^2 + 1 - e^{-v^{\varepsilon}/\varepsilon} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
[v^{\varepsilon}] = 0, [v_y^{\varepsilon}] = -2a \left[\varepsilon v_{xx}^{\varepsilon} - (v_x^{\varepsilon})^2 \right], & x \in \mathbb{R}, y = 0, t > 0, \\
v^{\varepsilon}(x, y, 0) = -\varepsilon \log g^{\varepsilon}, & (x, y) \in G_{\varepsilon} := spt\{g^{\varepsilon}\}, \\
v^{\varepsilon} \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^2 \backslash G_{\varepsilon},\n\end{cases}
$$
\n(1.3)

 v^{ε} converges to some v locally uniformly (to be proved later),

$$
\begin{cases}\n\min\{v_t + |\nabla v|^2 + 1, v\} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket v \rrbracket = 0, \llbracket v_y \rrbracket = 2av_x^2, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = 0, & (x, y) = (0, 0), \\
v \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\n\end{cases}
$$
\n(HJ)

4 0 8

7. M. I. Freidlin, Ann. Probab., 1985

The phase function

- Perform the logarithmic transformation⁷: $v^{\varepsilon} = -\varepsilon \log u^{\varepsilon}$.
- v^{ε} satisfies the following Hamilton-Jacobi equation :

$$
\begin{cases}\nv_{t}^{\varepsilon} - \varepsilon \Delta v^{\varepsilon} + |\nabla v^{\varepsilon}|^{2} + 1 - e^{-v^{\varepsilon}/\varepsilon} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket v^{\varepsilon} \rrbracket = 0, \llbracket v_{y}^{\varepsilon} \rrbracket = -2a \left[\varepsilon v_{xx}^{\varepsilon} - (v_{x}^{\varepsilon})^{2} \right], & x \in \mathbb{R}, y = 0, t > 0, \\
v^{\varepsilon}(x, y, 0) = -\varepsilon \log g^{\varepsilon}, & (x, y) \in G_{\varepsilon} := spt\{g^{\varepsilon}\}, \\
v^{\varepsilon} \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^{2} \backslash G_{\varepsilon},\n\end{cases}
$$
\n(1.3)

 v^{ε} converges to some v locally uniformly (to be proved later),

$$
\begin{cases}\n\min\{v_t + |\nabla v|^2 + 1, v\} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket v \rrbracket = 0, \llbracket v_y \rrbracket = 2av_x^2, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = 0, & (x, y) = (0, 0), \\
v \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\n\end{cases}
$$
\n(HJ)

7. M. I. Freidlin, Ann. Probab., 1985

The phase function

- Perform the logarithmic transformation⁷: $v^{\varepsilon} = -\varepsilon \log u^{\varepsilon}$.
- v^{ε} satisfies the following Hamilton-Jacobi equation :

$$
\begin{cases}\nv_{t}^{\varepsilon} - \varepsilon \Delta v^{\varepsilon} + |\nabla v^{\varepsilon}|^{2} + 1 - e^{-v^{\varepsilon}/\varepsilon} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket v^{\varepsilon} \rrbracket = 0, \llbracket v_{y}^{\varepsilon} \rrbracket = -2a \left[\varepsilon v_{xx}^{\varepsilon} - (v_{x}^{\varepsilon})^{2} \right], & x \in \mathbb{R}, y = 0, t > 0, \\
v^{\varepsilon}(x, y, 0) = -\varepsilon \log g^{\varepsilon}, & (x, y) \in G_{\varepsilon} := spt\{g^{\varepsilon}\}, \\
v^{\varepsilon} \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^{2} \backslash G_{\varepsilon},\n\end{cases}
$$
\n(1.3)

 v^{ε} converges to some v locally uniformly (to be proved later), where v satisfies

$$
\begin{cases}\n\min\{v_t + |\nabla v|^2 + 1, v\} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\llbracket v \rrbracket = 0, \llbracket v_y \rrbracket = 2av_x^2, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = 0, & (x, y) = (0, 0), \\
v \to \infty \text{ as } t \to 0+, & (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\n\end{cases}
$$
\n(HJ)

7. M. I. Freidlin, Ann. Probab., 1985

Lemma (2)

For any compact subset $K \in \mathbb{R}^2 \times \mathbb{R}_+$, there exists a constant $C(K)$ independent of $\varepsilon > 0$, such that

> $\sup |v^{\varepsilon}| \leq C(K).$ K

Define the so-called half-relaxed limits

\n- \n
$$
v^*(x,t) = \limsup_{\substack{\varepsilon \to 0 \\ (x',t') \to (x,t)}} v^{\varepsilon}(x',t')
$$
\n
\n- \n
$$
v_*(x,t) = \liminf_{\substack{\varepsilon \to 0 \\ (x',t') \to (x,t)}} v^{\varepsilon}(x',t')
$$
\n
\n

Lemma (2)

For any compact subset $K \in \mathbb{R}^2 \times \mathbb{R}_+$, there exists a constant $C(K)$ independent of $\varepsilon > 0$, such that

$$
\sup_K |v^\varepsilon| \le C(K).
$$

Define the so-called half-relaxed limits

\n- \n
$$
v^*(x,t) = \limsup_{\substack{\varepsilon \to 0 \\ (x',t') \to (x,t)}} v^{\varepsilon}(x',t')
$$
\n
\n- \n
$$
v_*(x,t) = \liminf_{\substack{\varepsilon \to 0 \\ (x',t') \to (x,t)}} v^{\varepsilon}(x',t')
$$
\n
\n

Consider the following variational inequality :

$$
\begin{cases}\n\min\{\mathcal{T}[v], v\} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\mathcal{B}[v] = 0, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = g_0(x, y), & x \in \mathbb{R}^2,\n\end{cases}
$$
\n(2.1)

where $\mathcal{T}[v] = v_t + |\nabla v|^2 + 1$, $\mathcal{B}[v] = 2av_x^2 - [v_y]$, and g_0 is positive, bounded, and Liptschitz continuous on \mathbb{R}^2 .

Use the theory of viscosity solutions⁸.

Srandall, H. Ishii, and P-L. Lions., Bull. A[mer](#page-44-0). [M](#page-46-0)[a](#page-44-0)[t](#page-45-0)[h](#page-46-0)[.](#page-47-0) [S](#page-44-0)[o](#page-45-0)[c.](#page-52-0)[,](#page-53-0) [1](#page-44-0)[9](#page-52-0)9[2](#page-53-0) Ω Consider the following variational inequality :

$$
\begin{cases}\n\min\{\mathcal{T}[v], v\} = 0, & x \in \mathbb{R}, y \neq 0, t > 0, \\
\mathcal{B}[v] = 0, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = g_0(x, y), & x \in \mathbb{R}^2,\n\end{cases}
$$
\n(2.1)

where $\mathcal{T}[v] = v_t + |\nabla v|^2 + 1$, $\mathcal{B}[v] = 2av_x^2 - [v_y]$, and g_0 is positive, bounded, and Liptschitz continuous on \mathbb{R}^2 .

Use the theory of viscosity solutions 8 .

8. M. G Crandall, H. Ishii, and P-L. Lions., Bull. A[mer](#page-45-0). [M](#page-47-0)[a](#page-44-0)[t](#page-45-0)[h](#page-46-0)[.](#page-47-0) [S](#page-44-0)[o](#page-45-0)[c.](#page-52-0)[,](#page-53-0) [1](#page-44-0)[9](#page-45-0)[9](#page-52-0)[2](#page-53-0) つひひ

Definition

A upper (lower) semi-continuous function $v(\overline{v})$ is a viscosity subsolution (*supersolution*) of [\(2.1\)](#page-45-1) on $\mathbb{R}^2 \times \mathbb{R}_+$ if for any $\phi \in C^1(\overline{\mathbb{R}_+^2} \times \mathbb{R}_+) \cap C^1(\overline{\mathbb{R}_-^2} \times \mathbb{R}_+) \cap C(\overline{\mathbb{R}^2} \times \mathbb{R}_+),$ assume $\underline{v} - \phi (\overline{v} - \phi)$ attains a strict maximum (*minimum*) at some $(x, y, t) \in \mathbb{R}^2 \times \mathbb{R}_+$ and $v > 0(\overline{v} > 0)$, then we have $\mathcal{T}[\phi](x, y, t) \leq 0 (\geq 0)$ if $y \neq 0$, and if $y = 0$,

$\min\{\mathcal{T}[\phi](x,0\pm,t),\mathcal{B}[\phi](x,0,t)\}\leq 0(0.6).$

 \bullet v is a viscosity solution of [\(2.1\)](#page-45-1) if v is both a subsolution and

Definition

A upper (lower) semi-continuous function $v(\overline{v})$ is a viscosity subsolution (*supersolution*) of [\(2.1\)](#page-45-1) on $\mathbb{R}^2 \times \mathbb{R}_+$ if for any $\phi \in C^1(\overline{\mathbb{R}_+^2} \times \mathbb{R}_+) \cap C^1(\overline{\mathbb{R}_-^2} \times \mathbb{R}_+) \cap C(\overline{\mathbb{R}^2} \times \mathbb{R}_+),$ assume $\underline{v} - \phi (\overline{v} - \phi)$ attains a strict maximum (*minimum*) at some $(x, y, t) \in \mathbb{R}^2 \times \mathbb{R}_+$ and $v > 0(\overline{v} > 0)$, then we have $\mathcal{T}[\phi](x, y, t) \leq 0 (\geq 0)$ if $y \neq 0$, and if $y = 0$,

 $\min\{\mathcal{T}[\phi](x,0\pm,t),\mathcal{B}[\phi](x,0,t)\}\leq 0(0.6).$

• v is a viscosity solution of (2.1) if v is both a subsolution and supersolution.

つひひ

Theorem (2.1)

Let \underline{v} and \overline{v} be a viscosity sub solution and super solution of [\(2.1\)](#page-45-1) respectively. If y is bounded above and \overline{v} is bounded below, and $\underline{v}(x, y, 0) \leq \overline{v}(x, y, 0)$, then $\underline{v} \leq \overline{v}$ on $\mathbb{R}^2 \times \overline{\mathbb{R}_+}$.

Step 1. Obtain the estimate $\sup_K |v^{\varepsilon}| \le C(K)$;

- Step 2. Show that v^* and v_* are subsolution and supersolution of [\(HJ\)](#page-40-0), respectively; moreover, $v_* \geq v^*$.
- Step 3. v^{ε} converges to v uniformly locally, and hence v is a viscosity solution of [\(1.3\)](#page-40-1).

- Step 1. Obtain the estimate $\sup_K |v^{\varepsilon}| \le C(K)$;
- Step 2. Show that v^* and v_* are subsolution and supersolution of [\(HJ\)](#page-40-0), respectively; moreover, $v_* \geq v^*$.
- Step 3. v^{ε} converges to v uniformly locally, and hence v is a viscosity solution of [\(1.3\)](#page-40-1).
- Step 1. Obtain the estimate $\sup_K |v^{\varepsilon}| \le C(K)$;
- Step 2. Show that v^* and v_* are subsolution and supersolution of [\(HJ\)](#page-40-0), respectively; moreover, $v_* \geq v^*$.
- Step 3. v^{ε} converges to v uniformly locally, and hence v is a viscosity solution of [\(1.3\)](#page-40-1).

Recall the variational inequality [\(2.1\)](#page-45-1), the viscosity solution exists and is unique ⁹ .

For any $p = (p_1, p_2) \in \mathbb{R}^2$, define

$$
H(p) = |p|^2 + 1, \quad B(p_1) = ap_1^2.
$$

Legendre transformation in the field and road are :

$$
L(q) = \sup_{p \in \mathbb{R}^2} \{ q \cdot p - H(p) \} = \frac{|q|^2}{4} - 1,
$$

\n
$$
G(q_1) = \sup_{p_1 \in \mathbb{R}} \{ q_1 \cdot p_1 - B(p_1) \} = \frac{q_1^2}{4a}.
$$
\n(3.1)

9. Indiana Univ. Math, 1989.

Introduce a two player, zero-sum differential game :

consider an ordinary differential equation

$$
\begin{cases} \dot{\gamma}(\tau) = f(\tau, \gamma(\tau), \eta(\tau), l(\tau)), & \tau \in (0, t), \\ \gamma(0) = x, & x \in \mathbb{R} \times \{y \neq 0\}. \end{cases}
$$
 (3.2)

• Player 1 : Find controls to minimize running-cost :

$$
\int_0^t L(-\eta(\tau)) + F(\gamma, \eta, l)(\tau) d\tau,
$$

where $F(\gamma, \eta, l)(\tau)$ is the running-cost on the x-axis.

• Player 2 : Stop the game and maximize running-cost.

Introduce a two player, zero-sum differential game :

consider an ordinary differential equation

$$
\begin{cases} \dot{\gamma}(\tau) = f(\tau, \gamma(\tau), \eta(\tau), l(\tau)), & \tau \in (0, t), \\ \gamma(0) = x, & x \in \mathbb{R} \times \{y \neq 0\}. \end{cases}
$$
 (3.2)

• Player 1 : Find controls to minimize running-cost :

$$
\int_0^t L(-\eta(\tau)) + F(\gamma, \eta, l)(\tau) d\tau,
$$

where $F(\gamma, \eta, l)(\tau)$ is the running-cost on the x-axis.

• Player 2 : Stop the game and maximize running-cost.

Introduce a two player, zero-sum differential game :

consider an ordinary differential equation

$$
\begin{cases} \dot{\gamma}(\tau) = f(\tau, \gamma(\tau), \eta(\tau), l(\tau)), & \tau \in (0, t), \\ \gamma(0) = x, & x \in \mathbb{R} \times \{y \neq 0\}. \end{cases}
$$
 (3.2)

• Player 1 : Find controls to minimize running-cost :

$$
\int_0^t L(-\eta(\tau)) + F(\gamma, \eta, l)(\tau) d\tau,
$$

where $F(\gamma, \eta, l)(\tau)$ is the running-cost on the x-axis.

• Player 2 : Stop the game and maximize running-cost.

More preciously, define a control triple (γ, η, l) :

- Control path $\gamma = (\gamma_1, \gamma_2) \in AC([0, t], \mathbb{R}^2)$, $\gamma(0) = x$ in the upper half plane, and $\gamma(\tau) \in \overline{\mathbb{R} \times \mathbb{R}_+}$;
- Control velocity : $\eta = (\eta_1, \eta_2) \in L^2([0, t], \mathbb{R}^2)$;

Local time : $l \in L^2([0, t], \mathbb{R}),$

 $\int l(\tau) \geq 0$ for $a.e.\tau \in [0, t]$ $l(\tau) = 0$ if $l(\tau) \in \{y > 0\}.$ More preciously, define a control triple (γ, η, l) :

- Control path $\gamma = (\gamma_1, \gamma_2) \in AC([0, t], \mathbb{R}^2)$, $\gamma(0) = x$ in the upper half plane, and $\gamma(\tau) \in \overline{\mathbb{R} \times \mathbb{R}_+}$;
- Control velocity : $\eta = (\eta_1, \eta_2) \in L^2([0, t], \mathbb{R}^2)$;

• Local time :
$$
l \in L^2([0, t], \mathbb{R})
$$
,

$$
\begin{cases} l(\tau) \ge 0 \text{ for a.e. } \tau \in [0, t] \\ l(\tau) = 0 \text{ if } l(\tau) \in \{y > 0\}. \end{cases}
$$

More preciously, define a control triple (γ, η, l) :

- Control path $\gamma = (\gamma_1, \gamma_2) \in AC([0, t], \mathbb{R}^2)$, $\gamma(0) = x$ in the upper half plane, and $\gamma(\tau) \in \overline{\mathbb{R} \times \mathbb{R}_+}$;
- Control velocity : $\eta = (\eta_1, \eta_2) \in L^2([0, t], \mathbb{R}^2)$;
- Local time : $l \in L^2([0,t],\mathbb{R})$,

$$
\begin{cases}\n l(\tau) \ge 0 \text{ for a.e.} \tau \in [0, t] \\
 l(\tau) = 0 \text{ if } l(\tau) \in \{y > 0\}.\n\end{cases}
$$

Optimal Controls (Player 1)

Introduce a condition ¹⁰ : there exists a $h \in L^1([0,t], \mathbb{R})$ s.t.

$$
\begin{cases}\n\text{the function}: \tau \mapsto F(\gamma, \eta, l) := l(\tau) G(\frac{(\eta_1 - \gamma_1)}{l}(\tau)), \\
\text{is integrable on } [0, t], \\
\dot{\gamma}(\tau) = \eta(\tau) \text{ if } l(\tau) = 0 \text{ for } a.e.\tau \in [0, t], \\
|\eta_2(\tau)| = |\dot{\gamma}_2(\tau)| + l(\tau) \text{ if } l(\tau) \neq 0 \text{ for } a.e.\tau \in [0, t].\n\end{cases} (H)
$$

Denote $N := \{(\gamma, \eta, l) | (\gamma, \eta, l)$ satisfies $(H) \}.$

10. G. Barles, H. Ishii, and H. Mitake, ARMA, 2012

 \leftarrow \Box \rightarrow

Stopping times (*Player 2*)

A stopping time is a mapping

$$
\theta: L^2([0,t];\mathbb{R}^2) \mapsto [0,t],
$$

such that for all $s \in [0, t]$, and $\gamma, \hat{\gamma} \in L^2([0, t]; \mathbb{R}^2)$, if $\gamma(\tau) = \hat{\gamma}(\tau)$ for a.e. $\tau \in [0, s]$ and $\theta(\tau) \leq s$, then $\theta(\gamma) = \theta(\hat{\gamma})$.

- \bullet Θ is the set of all stopping times.
- Define the upper value function :

$$
I(x,t) = \sup_{\theta \in \Theta(\gamma,\eta,l) \in N} \left\{ \int_0^{\theta[\gamma]} L(-\eta(\tau)) + F(\gamma,\eta,l) d\tau + \mathcal{X}_{\{\theta[\gamma] = t\}} g_0(\gamma(t)) \right\}
$$

 \bullet I satisfies the dynamic programming principle 11 , i.e. for any $\sigma \in [0, t],$

$$
I(x,t) = \sup_{\theta \in \Theta} \inf_{(\gamma,\eta,l) \in N} \left\{ \int_0^{\sigma \wedge \theta[\gamma]} L(-\eta(\tau)) + F(\gamma,\eta,l)(\tau) d\tau + \mathcal{X}_{\{\theta[\gamma]\geq \sigma\}} I(\gamma(\sigma),t-\sigma) \right\}
$$

Theorem

I is continuous on $\mathbb{R}^2 \times \mathbb{R}_+$ and a viscosity solution of [\(2.1\)](#page-45-1). Moreover, $\lim_{t\to 0+} I(x,t) = q_0(x).$

11. L. C. Evans and P. E. Souganidis, India. Uni. Ma[th.](#page-61-0) [Jo](#page-63-0)[ur](#page-61-0) ϵ , [1](#page-63-0)[98](#page-52-0)[4](#page-53-0) $2Q$

Define

$$
v(x,t) = \sup_{\theta \in \Theta} \inf_{(\gamma,\eta,l) \in N} \left\{ \int_0^{\theta[\gamma]} L(-\eta(\tau)) + F(\gamma,\eta,l)(\tau) d\tau \Big| \gamma(t) = (0,0) \right\}
$$

Theorem

$v^*(x,t) \le v \le v_*$ on $\mathbb{R}^2 \times [0,\infty)$. Hence, v is the viscosity solution of (HJ) .

Brief Proof.

- Step 1. Show that v^* and v_* are sub-solution and super-solution of
- Step 2. Prove $v_*(x,t) \ge v(x,t)$.
- Step 3. Prove $v^*(x,t) \leq v(x,t)$.

Define

$$
v(x,t) = \sup_{\theta \in \Theta} \inf_{(\gamma,\eta,l) \in N} \left\{ \int_0^{\theta[\gamma]} L(-\eta(\tau)) + F(\gamma,\eta,l)(\tau) d\tau \middle| \gamma(t) = (0,0) \right\}
$$

Theorem

 $v^*(x,t) \le v \le v_*$ on $\mathbb{R}^2 \times [0,\infty)$. Hence, v is the viscosity solution of $(HJ).$ $(HJ).$

Brief Proof.

- Step 1. Show that v^* and v_* are sub-solution and super-solution of [\(HJ\)](#page-40-0), respectively.
- Step 2. Prove $v_*(x,t) \ge v(x,t)$.
- Step 3. Prove $v^*(x,t) \leq v(x,t)$.

Limits of the phase function

Define a payoff

$$
J(x, y, t) = \inf_{(\gamma, \eta, l) \in N} \left\{ \int_0^{\theta[\gamma]} L(-\eta(\tau)) + F(\gamma, \eta, l)(\tau) d\tau \middle| \gamma(t) = (0, 0) \right\},\,
$$

Then, we can prove $v(x, y, t) = \max\{0, J(x, y, t)\}\$ by verifying the Freidlin's condition ¹² :

$$
J(x, y, t) = \inf_{(\gamma, \eta, l) \in N} \left\{ \int_0^{\theta[\gamma]} L(-\eta(\tau)) + F(\gamma, \eta, l)(\tau) d\tau \right\}
$$

$$
\gamma(t) = (0, 0), (\gamma(\tau), t - \tau) \in P \left\},
$$

for $(x, y, t) \in \partial P$, where $P := \{J > 0\}.$

12. M. I. Freidlin, Princeton University Press, 1985 4.000 $2Q$ Xingri Geng [A Hamilton-Jacobi Approach](#page-0-0) Nov 04, 2022 31/35

Theorem

$$
J(x, y, t) = \varphi^*(x, y, t) - t,
$$

where

$$
\varphi^*(x, y, t) = \min_{s \ge 0} \left\{ \frac{x^2}{4(t + as)} + \frac{(|y| + s)^2}{4t} \right\}.
$$

The result was first proved by X.F. Chen, J.F. He, and X.F. Wang.¹³

13. The asymptotic propagation speed of the Fisher-KPP equation with effective boundary condition on a road, preprint 4 0 8 $2Q$

Limits of the phase function

Brief proof :

Step 1. φ^* is the lower-bound of J, i.e.

$$
J(x, y, t) \ge \frac{x^2}{4(t + as)} + \frac{(|y| + s)^2}{4t} - t \ge \varphi^*.
$$

Step 2. Find control triple to attain the lower-bound, i.e.

 $J(x, y, t) = \varphi^*$.

 \leftarrow

Limits of the phase function

Brief proof :

Step 1. φ^* is the lower-bound of J, i.e.

$$
J(x, y, t) \ge \frac{x^2}{4(t + as)} + \frac{(|y| + s)^2}{4t} - t \ge \varphi^*.
$$

• Step 2. Find control triple to attain the lower-bound, *i.e.*

$$
J(x, y, t) = \varphi^*.
$$

 \leftarrow

The full model :

$$
\begin{cases}\n u_t - \nabla \cdot (\tilde{\sigma} \nabla u) = u(1 - u), & (x, y) \in \mathbb{R}^2, t > 0, \\
 u(x, y, 0) = \varphi(x, y), & (x, y) \in \mathbb{R}^2, \\
 0 \le \varphi \le 1, & \varphi \not\equiv 0, \varphi \text{ compactly supported}\n\end{cases}
$$

$$
\tilde{\sigma} = \begin{cases} \sigma, & \text{if } y \in (1, 1 + \delta) \cup (-1 - \delta, -1), \\ 1, & \text{else.} \end{cases}
$$

舌 .

×

 \leftarrow \Box \rightarrow

-4 点 × D.

The full model :

$$
\begin{cases}\n u_t - \nabla \cdot (\tilde{\sigma} \nabla u) = u(1 - u), & (x, y) \in \mathbb{R}^2, t > 0, \\
 u(x, y, 0) = \varphi(x, y), & (x, y) \in \mathbb{R}^2, \\
 0 \le \varphi \le 1, & \varphi \not\equiv 0, \varphi \text{ compactly supported}\n\end{cases}
$$

where

$$
\tilde{\sigma} = \begin{cases} \sigma, & \text{if } y \in (1, 1 + \delta) \cup (-1 - \delta, -1), \\ 1, & \text{else.} \end{cases}
$$

舌 . G.

 \leftarrow \Box \rightarrow

 \leftarrow \leftarrow ×

THANK YOU !

重 ×

 \leftarrow \Box \rightarrow

 $2Q$