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tions : a road-field model

Field: 1

Road: o

e Population growth with a road.
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Scenario :

e Road is narrow, and field is large;

o diffusion rate is large on road, small in field.

o Multi-scales in both spatial variable and diffusion rate.
@ Thus cumbersome and difficult to solve the “full model”;
e hard to see the effects of the road.

Resolution : Think of the road as a widthless line and then impose
suitable conditions on it.
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In 2013, Berestycki, Roquejoffre and Rossi proposed a simple model :
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@ the road has no width — a line;
@ no reproduction on the line;

e exchange between the line and the field ;
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Motivation

In 2013, Berestycki, Roquejoffre and Rossi proposed a simple model :
@ the road has no width — a line;
@ no reproduction on the line;
e exchange between the line and the field ;

e symmetry w.r.t. the y direction.
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Motivation

Berestycki, Roquejoffre and Rossi® proposed the following system

ug — Dug, = vo(x,0,t) — pu, x €R,t >0,
v —Av=0v(1 —v), (z,y) eRZ,t >0,
—dvy(z,0,t) = pu — vu(x,0,t), =R, t>0.

u : line density of species on the line.

v : area density of species in the field.
°

1. J. Math. Biol., 2013
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Motivation

Berestycki, Roquejoffre and Rossi® proposed the following system

ug — Dug, = vo(x,0,t) — pu, x €R,t >0,
v —Av=0v(1 —v), (z,y) eRZ,t >0,
—dvy(z,0,t) = pu — vu(x,0,t), =R, t>0.

u : line density of species on the line.

v : area density of species in the field.

e The asymptotic speed of spreading ¢, = cxpp =2if D < 2; ¢, > 2
ifD>2andc*:O(\/T?) as D — o00;

1. J. Math. Biol., 2013
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Motivation

Berestycki, Roquejoffre and Rossi® proposed the following system

ug — Dug, = vo(x,0,t) — pu, x €R,t >0,
v —Av=0v(1 —v), (z,y) eRZ,t >0,
—dvy(z,0,t) = pu — vu(x,0,t), =R, t>0.
u : line density of species on the line.
v : area density of species in the field.
e The asymptotic speed of spreading ¢, = cxpp =2if D < 2; ¢, > 2
ifD>2andc*:O(\/T?) as D — o00;
e and

lim sup (u(z,y,t),v(x,y,t)) = (0,0) for any ¢ > c,

t—o00 |z|>ct

lim sup (u(z,y,t),v(z,y,t)) = (1/p,1) for any 0 < ¢ < cy.

t—o0 |ac|§ct

1. J. Math. Biol., 2013
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A different model

A different model by using the idea of “effective boundary conditions”?.

e Start with the full model;

2. H. L1 and X. Wang, Nonlinearity, 2017
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A different model

A different model by using the idea of “effective boundary conditions”?.

e Start with the full model;

e send § — 0, and prove the solution of full model converges, then
get the “effective model”(limiting model) with “effective boundary
condition”(EBC) imposed on z—axis.

2. H. Li and X. Wang, Nonlinearity, 2017
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A different model

A different model by using the idea of “effective boundary conditions”?.

e Start with the full model;

e send § — 0, and prove the solution of full model converges, then
get the “effective model”(limiting model) with “effective boundary
condition”(EBC) imposed on z—axis.

@ The multiple scales are all gone in the effective model .

2. H. Li and X. Wang, Nonlinearity, 2017
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A different model

The full model :

ug— V- (6Vu) = u(l —u), (z,y) € R%,t > 0,
w(z,y,0) = p(z,y), (z,y) € R?,
0<p<1, p#0,  compactly supported
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A different model

The full model :

ug— V- (6Vu) = u(l —u), (z,y) € R%,t > 0,
w(z,y,0) = p(z,y), (z,y) € R?,
0<p<1, p#0,  compactly supported

where

- o, if y € (0,0),
g =
1, else.

The cases of 0 > O(1) and o = o(1) are studied.
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A different model

The full model :

ug— V- (6Vu) = u(l —u), (z,y) € R%,t > 0,
w(z,y,0) = p(z,y), (z,y) € R?,
0<p<1, p#0,  compactly supported

where

- o, if y € (0,0),

g =
1, else.

The cases of 0 > O(1) and o = o(1) are studied.

e Remark : The Berestycki- Roquejoffre-RRossi model can also be

derived by using the idea of effective boundary conditions from a
different full model.
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Main Result ?

VT € (0,00), u — v in C ([0, T], L} (R?)) as 6 — 0, where v satisfies

vp=Av+v(l—v), y#0, t>0,

the same nitial condition but the following EBC on xz-axis.

3. H. Li and X. Wang, Nonlinearity, 2017
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EBC with Large o

Asd—0 EBC ony =0
oc>0(1)>0,00 >0 vT =0T, 0l = vy
gd = a € (0,00) vt =07, v, — vl = avf,
0§ — 00 vt =07 =0

Xingri Geng
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EBC with Small o

Asd— 0 EBCony=0
5—0 Uy_:’UJ:O
§ = b€ (0,00) || vf =v,, v, =bT —v7)
5 —00,0—0 vt =0T, vy = vy

Xingri Geng
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Asymptotic propagation speed

e A natural question : what is the asymptotic propagation speed and
shape of the effective model with the boundary condition

v = v, —U

+ _— ot 9
y oy :

= AUy,
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Asymptotic propagation spee

e A natural question : what is the asymptotic propagation speed and
shape of the effective model with the boundary condition

f e o — ot — gt ?
v = ,Uy Uy = AUy, {

o Answered by X.F. Chen, J.F. He, and X.F. Wang?.

4. The asymptotic propagation speed of the Fisher-KPP equation with effective
boundary condltlon on a road, preprint
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Asymptotic propagation spee

e A natural question : what is the asymptotic propagation speed and
shape of the effective model with the boundary condition

t o ot — gt 2
V=0, — Uy =AUy,

o Answered by X.F. Chen, J.F. He, and X.F. Wang?.

e A Hamilton-Jacobi approach for asymptotic propagation speed and
shape.

4. The asymptotic propagation speed of the Fisher-KPP equation with effective
boundary condltlon on a road, preprint
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There are lots of works on propagation for the reaction-diffusion PDE
using a Hamilton-Jacob approach.
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using a Hamilton-Jacob approach.

o In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear
reaction-diffusion equations.
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There are lots of works on propagation for the reaction-diffusion PDE
using a Hamilton-Jacob approach.

In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear
reaction-diffusion equations.

In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied
wavefront propagation for reaction-diffusion systems.

In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species
Lotka-Volterra competition-diffusion system.

In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species
competition system.

In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of
dispersal.
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Effective Problem

The effective problem :

up — Au = u(l — u), reR,y#£0,t>0,
[u] =0, [uy] = —2aug,, = €R,y=0,t>0, (1.1)
U(.%,y,()) = uO(xay)v (l’,y) € ]R2)

where
[u] := w(z,0+,t) — u(x,0—,1)
and 0 < p <1, ¢ #0, ¢ compactly supported.
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Effective Problem

The effective problem :

up — Au = u(l — u), reR,y#£0,t>0,
[u] =0, [uy] = —2aug,, = €R,y=0,t>0, (1.1)
U(.%,y,()) = uO(xay)v (l’,y) € ]R2)

where
[u] := w(z,0+,t) — u(x,0—,1)
and 0 < p <1, ¢ #0, ¢ compactly supported.

e Question : what is the asymptotic propagation speed and shape of
this model ?
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Asymptotic speed and shape

For each v € (0,1),

Jim (e Ol = 0 Jim [fu(-+8) = o=y = 0,
where 9(#) = t2(1) and (1) = {(z,9)|9*(@3,1) < 1},
5 : z’ (lyl + )
@y, t) = rsn>_1(r)l{4(15—1—a3) LT }
y
2
// R(€ A
/ 0\ BO) 0o = arcsin-—2%
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Effective Problem

Inspired by L. C. Evans® and Souganidis®, consider the following
rescaling

where u®(z,y,t) satisfies

1
uj = eAu® + —u(1 — u), reR,y#0,t>0,

< 1.2)
[uf] = 0, [ug] = —2acus,, reRy=0t>0 (L
u(2,y,0) = ug(z/e,y/e) == g°(x,y), (z,y) € R

5. Indiana Univ. Math, 1989
6. Springer, Berlin, Heidelberg, 1997
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Lemma (1)

There exists a constant C independent of € > 0, such that

0<u® <C.

and

limsup «® <1
e—0

locally uniformly in R? x R
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The phase function

o Perform the logarithmic transformation” : v® = —¢logu®.

7. M. I Fre1dhn Ann. Probab., 1985
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The phase function

o Perform the logarithmic transformation” : v® = —¢logu®.

e v° satisfies the following Hamilton-Jacobi equation :

vta—5AUE+\VU‘5]2+1—6_”E/E:0, xreR,y#0,t>0,
[[UE]] =0, [[U;]] = —2a [EU;I - (v;)Q] ) re€R,y=0,t>0,
'Ue('r7y70) = —¢clogg~, (xvy) €G. = Spt{gs},
v® — oo as t — 0+, (z,y) € R?\GL,

(1.3)

7. M. L. Freidlin, Ann. Probab., 1985
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The phase function

o Perform the logarithmic transformation” : v® = —¢logu®.

e v° satisfies the following Hamilton-Jacobi equation :

vta—5AUE+\VU‘5]2+1—6_”E/E:0, xreR,y#0,t>0,
[[UE]] =0, [[U;]] = —2a [EU;I - (v;)Q] ) re€R,y=0,t>0,
'Ue('r7y70) = —¢clogg~, (xvy) €G. = Spt{gs},
v® — oo as t — 0+, (z,y) € R?\GL,

(1.3)

e v° converges to some v locally uniformly (to be proved later),
where v satisfies

min{v; + |Vo|? + 1,0} =0, z€R,y#0,t>0,

[v] = 0, [v,] = 2av2, r€e€R,y=0,t>0, (HJ)
’U(:L’,y,O) =0, (Jj,y) = (010)7
v — 00 ast — 0+, (z,y) € R\{(0,0)},

7. M. L. Freidlin, Ann. Probab., 1985
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The phase function

For any compact subset K € R? x R, there exists a constant C(K)
independent of € > 0, such that

sup [v*] < C(K).
K
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The phase function

For any compact subset K € R? x R, there exists a constant C(K)
independent of € > 0, such that

sup [v*] < C(K).
K

Define the so-called half-relaxed limits

e v*(x,t) = limsup v°(z/,t')
e—0
(2! )= (z,t)
o v.(z,t) = liminf v*(a/,t)
e—0

(z! t") = (z,t)
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Variational Inequality

o Consider the following variational inequality :

min{7 [v],v} =0, reRy#0,t>0,
Bv] =0, re€R y=0,t>0, (2.1)
v(x,y,O) = gO(xay)7 T e R27

where T[v] = v + |[Vv|? + 1, Blv] = 2av? — [v,], and go is positive,
bounded, and Liptschitz continuous on R2.
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Variational Inequality

o Consider the following variational inequality :

min{7 [v],v} =0, reRy#0,t>0,
Bv] =0, re€R y=0,t>0, (2.1)
v(x,y,O) = gO(xay)7 T e R27

where T[v] = v + |[Vv|? + 1, Blv] = 2av? — [v,], and go is positive,
bounded, and Liptschitz continuous on R2.

e Use the theory of viscosity solutions 3.

8. M. G Crandall, H. Ishii, and P-L. Lions., Bull. Amer. Math. Soc., 1992
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Viscosity solutions

Definition

A upper (lower) semi-continuous function v () is a viscosity
subsolution (supersolution) of (2.1) on R? x R if for any

¢ € CI(RTEL x Ry)NCHRZ x Ry) N C(R2 x Ry ), assume v — ¢ (T — ¢)
attains a strict maximum (minimum) at some (z,y,t) € R? x R, and

v > 0(v > 0), then we have T[¢|(z,y,t) <0(>0) if y # 0, and if y = 0,

min{7[¢](z, 0%, 1), B[¢](z,0,)} < 0(= 0).

Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022



Viscosity solutions

Definition

A upper (lower) semi-continuous function v () is a viscosity
subsolution (supersolution) of (2.1) on R? x R if for any

¢ € CI(RTEL x Ry)NCHRZ x Ry) N C(R2 x Ry ), assume v — ¢ (T — ¢)
attains a strict maximum (minimum) at some (z,y,t) € R? x R, and

v > 0(v > 0), then we have T[¢|(z,y,t) <0(>0) if y # 0, and if y = 0,

min{7[¢](z, 0%, 1), B[¢](z,0,)} < 0(= 0).

@ v is a viscosity solution of (2.1) if v is both a subsolution and
supersolution.
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Comparison princ

Let v and T be a viscosity sub solution and super solution of (2.1)
respectively. If v is bounded above and v isﬁ)unded below, and
v(z,y,0) <v(x,y,0), thenv < v on R2 x R
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Outline of the proof

e Step 1. Obtain the estimate supy [v¢| < C(K);
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Outline of the proof

e Step 1. Obtain the estimate supy [v¢| < C(K);

e Step 2. Show that v* and v, are subsolution and supersolution of
(HJ), respectively ; moreover, v, > v*.
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Outline of the proof

e Step 1. Obtain the estimate supy [v¢| < C(K);

e Step 2. Show that v* and v, are subsolution and supersolution of
(HJ), respectively ; moreover, v, > v*.

@ Step 3. v® converges to v uniformly locally, and hence v is a
viscosity solution of (1.3).
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An optimal control problem

Recall the variational inequality (2.1), the viscosity solution exists and

is unique?.

e For any p = (p1, p2) € R?, define
H(p) = |p*+1, B(p) = api.

@ Legendre transformation in the field and road are :

2
L(q) = sup{q-p—H(p)} = lai” _ 1,
p€R2 4
2 (3.1)
G(q1) = sup{q1 -p1 — B(p1)} = 4—1-
p1ER a

9. Indiana Univ. Math, 1989.
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An optimal control problem

Introduce a two player, zero-sum differential game :

e consider an ordinary differential equation

Y(r) = f(r,9(7),n(7),U7)), 7€ (0,1),
{ ~7(0) = z, x € R x {y #0}. (3.2)
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An optimal control problem

Introduce a two player, zero-sum differential game :

e consider an ordinary differential equation

Y(r) = f(r,9(7),n(7),U7)), 7€ (0,1),
{ ~7(0) = z, x € R x {y #0}. (3.2)

e Player 1 : Find controls to minimize running-cost :

/O L(—n(r)) + F(y,m.1)(r)dr,

where F(v,n,1)(T) is the running-cost on the z-azis.
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An optimal control problem

Introduce a two player, zero-sum differential game :

e consider an ordinary differential equation

Y(r) = f(r,9(7),n(7),U7)), 7€ (0,1),
{ ~7(0) = z, x € R x {y #0}. (3.2)

e Player 1 : Find controls to minimize running-cost :
t
| Elntm) + Fon ),
where F(v,n,1)(T) is the running-cost on the z-azis.

o Player 2 : Stop the game and maximize running-cost.
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Optimal Controls (Player 1)

More preciously, define a control triple (vy,n,1) :
o Control path v = (v1,72) € AC([0,t],R?), v(0) = z in the upper

half plane, and y(7) € R x Ry ;
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half plane, and y(7) € R x Ry ;

o Control velocity : = (m1,m2) € L([0,], R?);
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Optimal Controls (Player 1)

More preciously, define a control triple (vy,n,1) :
o Control path v = (v1,72) € AC([0,t],R?), v(0) = z in the upper

half plane, and y(7) € R x Ry ;
o Control velocity : = (m1,m2) € L([0,], R?);

o Local time : [ € L?([0,],R),

{ I(1) >0 for a.e.T € [0,¢]
I(r) =01if I(7) € {y > 0}.
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Optimal Controls (Player 1)

Introduce a condition !V : there exists a h € L([0,],R) s.t.

the function : 7 — F(vy,n,1) := l(T)G((mjiﬁ)(T)),

is integrable on [0, t], (H)
A(r) =n(r) if I(7) = 0 for a.e.T € [0, 1],

In2(T)| = |F2(7)| + U(7) if I(T) # O for a.e.T € [0, 1].

Denote N := {(v,n,1)|(v,n,1) satisfies (H)}.

7(0) =x

J

1) =(0,0" (s s

10. G. Barles, H. Ishii, and H. Mitake, ARMA, 2012
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Stopping times (Player 2)

e A stopping time is a mapping
0 : L*([0,; R%) — [0,1],

such that for all s € [0,¢], and v,4 € L%([0,t]; R?), if y(7) = 4(7)
for a.e. 7 € [0,s] and 0(7) < s, then 0(y) = 0(%).

e O is the set of all stopping times.

@ Define the upper value function :

0[]
Ity =sw it { [ Lnr) + P
geo(ymheN L Jy

+ X{o[y]zt}go(’Y(t))}
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The upper value function

o [ satisfies the dynamic programming principle ', i.e. for any
o €10,],

aAd]
Iaoy=sw it { [0 L)+ P
oo (vnheN L Jy

+ Xopy oy L (v(0), t — 0)}

I is continuous on R? x R, and a viscosity solution of (2.1). Moreover,
limy 04 I(z,t) = go(x).

11. L. C. Evans and P. E. Souganidis, India. Uni. Math.-Jours 1984
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Limits of the phase function

Define

o]
vty =supint £ L) + P @0 = 0.0)]

v*(z,t) < v < v, on R? x [0,00). Hence, v is the viscosity solution of
(HJ).
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Limits of the phase function

Define

o]
vty =supint £ L) + P @0 = 0.0)]

v*(z,t) < v < v, on R? x [0,00). Hence, v is the viscosity solution of
(HJ).

Brief Proof.
e Step 1. Show that v* and v, are sub-solution and super-solution of
(HJ), respectively.
e Step 2. Prove vi(x,t) > v(x ,t).
e Step 3. Prove v*(z,t) <w
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Limits of the phase function

Define a payoff

0[]
sat = int { [T 1) + P d@drn = 0.0},

Then, we can prove v(z,y,t) = max{0, J(z, y, t)} by verifying the
Freidlin’s condition !2 :

0[]
Jot)= it {7 Lnm) + Poun i
(rmbheN L Jo

At) = (0,0), (4(7),t = 7) € P},

for (z,y,t) € OP, where P := {J > 0}.

12. M. L. Freidlin, Princeton University Press, 1985
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Limits of the phase function

Theorem

J(‘Za Y, t) = 90*($7y7 t) — ta

where
2

: x (Iyl + 5)2
o) =mip | |
o (@ 9.1) 20 4(t+a8)+ 4t

The result was first proved by X.F. Chen, J.F. He, and X.F. Wang. 13

13. The asymptotic propagation speed of the Fisher-KPP equation with effective
boundary condltlon on a road, preprint
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Limits of the phase function

Brief proof :
o Step 1. ¢* is the lower-bound of J, i.e.

2 2
xT + s

J(w,y,t)24<t+a3) 7

az? = 2y|t

Q1)

(,0) ’
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Limits of the phase function

Brief proof :
o Step 1. ¢* is the lower-bound of J, i.e.

2 2
xT + s

24(t+as) It —tzen

J(z,y,t)

e Step 2. Find control triple to attain the lower-bound, i.e.

az? = 2y|t

Q1)

(,0) ’
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Ongoing : multiple

@ The full model :

ug — V- (6Vu) = u(l —u), (z,y) € R%,t > 0,
w(,y,0) = o(z,y), (z,y) € R?,
0<p<1, p=#0, ¢ compactly supported
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Ongoing : multiple roads

@ The full model :

ug — V- (6Vu) = u(l —u), (z,y) € R%,t > 0,
w(,y,0) = o(z,y), (z,y) € R?,
0<p<1, p=#0, ¢ compactly supported

where
~ g, iny(l,l—i—é)U(—l—(s,—l),
g =
1, else.
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THANK YOU' !

A Hamil
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