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Motivations : a road-field model

Population growth with a road.
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Scenario :

Road is narrow, and field is large ;
diffusion rate is large on road, small in field.
Multi-scales in both spatial variable and diffusion rate.
Thus cumbersome and difficult to solve the “full model” ;
hard to see the effects of the road.

Resolution : Think of the road as a widthless line and then impose
suitable conditions on it.
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Motivation

In 2013, Berestycki, Roquejoffre and Rossi proposed a simple model :

the road has no width — a line ;

no reproduction on the line ;

exchange between the line and the field ;

symmetry w.r.t. the y direction.
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Motivation

Berestycki, Roquejoffre and Rossi 1 proposed the following system
ut −Duxx = νv(x, 0, t)− µu, x ∈ R, t > 0,

vt −∆v = v(1− v), (x, y) ∈ R2
+, t > 0,

−dvy(x, 0, t) = µu− νv(x, 0, t), x ∈ R, t > 0.

u : line density of species on the line.
v : area density of species in the field.

The asymptotic speed of spreading c∗ = cKPP = 2 if D ≤ 2 ; c∗ > 2
if D > 2 and c∗ = O(

√
D) as D → ∞ ;

and

lim
t→∞

sup
|x|≥ct

(u(x, y, t), v(x, y, t)) = (0, 0) for any c > c∗,

lim
t→∞

sup
|x|≤ct

(u(x, y, t), v(x, y, t)) = (1/µ, 1) for any 0 < c < c∗.

1. J. Math. Biol., 2013
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A different model

A different model by using the idea of “effective boundary conditions” 2.

Start with the full model ;

send δ → 0, and prove the solution of full model converges, then
get the “effective model”(limiting model) with “effective boundary
condition”(EBC) imposed on x−axis.

The multiple scales are all gone in the effective model .

2. H. Li and X. Wang, Nonlinearity, 2017
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A different model

The full model :


ut −∇ · (σ̃∇u) = u(1− u), (x, y) ∈ R2, t > 0,
u(x, y, 0) = φ(x, y), (x, y) ∈ R2,
0 ≤ φ ≤ 1, φ ̸≡ 0, φ compactly supported

where

σ̃ =

{
σ, if y ∈ (0, δ),
1, else.

The cases of σ ≥ O(1) and σ = o(1) are studied.
Remark : The Berestycki-Roquejoffre-Rossi model can also be
derived by using the idea of effective boundary conditions from a
different full model.
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Main Result 3

Theorem
∀T ∈ (0,∞), u → v in C

(
[0, T ], L2

loc(R2)
)

as δ → 0, where v satisfies

vt = ∆v + v(1− v), y ̸= 0, t > 0,

the same initial condition but the following EBC on x-axis.

3. H. Li and X. Wang, Nonlinearity, 2017
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EBC with Large σ

As δ → 0 EBC on y = 0

σ ≥ O(1) > 0, σδ → 0 v+ = v−, v+y = v−y

σδ → a ∈ (0,∞) v+ = v−, v−y − v+y = av+xx

σδ → ∞ v+ = v− = 0
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EBC with Small σ

As δ → 0 EBC on y = 0

σ
δ → 0 v−y = v+y = 0

σ
δ → b ∈ (0,∞) v+y = v−y , v−y = b(v+ − v−)

σ
δ → ∞, σ → 0 v+ = v−, v+y = v−y
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Asymptotic propagation speed

A natural question : what is the asymptotic propagation speed and
shape of the effective model with the boundary condition

v+ = v−, v−y − v+y = av+xx ?

Answered by X.F. Chen, J.F. He, and X.F. Wang 4.

A Hamilton-Jacobi approach for asymptotic propagation speed and
shape.

4. The asymptotic propagation speed of the Fisher-KPP equation with effective
boundary condition on a road, preprint
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History

There are lots of works on propagation for the reaction-diffusion PDE
using a Hamilton-Jacob approach.

In 1989, L.C. Evans and P. E. Souganidis studied certain nonlinear
reaction-diffusion equations.
In 1990, G. Barles, L.C. Evans and P. E. Souganidis studied
wavefront propagation for reaction-diffusion systems.
In 2020, Q. Liu, S. Liu, and K.-Y. Lam studied a two-species
Lotka-Volterra competition-diffusion system.
In 2021, Q. Liu, S. Liu, and K.-Y. Lam studied a three-species
competition system.
In 2022, K.-Y. Lam, Y. Lou and B. Perthame studied evolution of
dispersal.
...
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Effective Problem

The effective problem :
ut −∆u = u(1− u), x ∈ R, y ̸= 0, t > 0,
[[u]] = 0, [[uy]] = −2auxx, x ∈ R, y = 0, t > 0,
u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

(1.1)

where
[[u]] := u(x, 0+, t)− u(x, 0−, t)

and 0 ≤ φ ≤ 1, φ ̸≡ 0, φ compactly supported.

Question : what is the asymptotic propagation speed and shape of
this model ?
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Asymptotic speed and shape

Theorem
For each ν ∈ (0, 1),

lim
t→∞

∥u(·, t)∥L∞(Ωc(t)) = 0, lim
t→∞

∥u(·, t)− 1∥L∞(Ω(νt)) = 0,

where Ω(t) = tΩ(1) and Ω(1) = {(x, y)|φ∗(x, y, 1) < 1},

φ∗(x, y, t) := min
s≥0

{ x2

4(t+ as)
+

(|y|+ s)2

4t

}
.

θ0 = arcsin 2a
1+

√
1+4a2

Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 15 / 35



Effective Problem

Inspired by L. C. Evans 5 and Souganidis 6, consider the following
rescaling

uε(x, y, t) = u

(
x

ε
,
y

ε
,
t

ε

)
,

where uε(x, y, t) satisfies
uεt = ε∆uε +

1

ε
uε(1− uε), x ∈ R, y ̸= 0, t > 0,

[[uε]] = 0, [[uεy]] = −2aεuεxx, x ∈ R, y = 0, t > 0,

uε(x, y, 0) = uε0(x/ε, y/ε) := gε(x, y), (x, y) ∈ R2.

(1.2)

5. Indiana Univ. Math, 1989
6. Springer, Berlin, Heidelberg, 1997
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Effective Problem

Lemma (1)
There exists a constant C independent of ε > 0, such that

0 < uε ≤ C.

and
lim
ε→0

sup uε ≤ 1

locally uniformly in R2 × R+.

Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 17 / 35



The phase function

Perform the logarithmic transformation 7 : vε = −ε log uε.
vε satisfies the following Hamilton-Jacobi equation :

vεt − ε∆vε + |∇vε|2 + 1− e−vε/ε = 0, x ∈ R, y ̸= 0, t > 0,

[[vε]] = 0, [[vεy]] = −2a
[
εvεxx − (vεx)

2
]
, x ∈ R, y = 0, t > 0,

vε(x, y, 0) = −ε log gε, (x, y) ∈ Gε := spt{gε},
vε → ∞ as t → 0+, (x, y) ∈ R2\Gε,

(1.3)

vε converges to some v locally uniformly (to be proved later),
where v satisfies

min{vt + |∇v|2 + 1, v} = 0, x ∈ R, y ̸= 0, t > 0,

[[v]] = 0, [[vy]] = 2av2x, x ∈ R, y = 0, t > 0,
v(x, y, 0) = 0, (x, y) = (0, 0),
v → ∞ as t → 0+, (x, y) ∈ R2\{(0, 0)},

(HJ)

7. M. I. Freidlin, Ann. Probab., 1985
Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 18 / 35
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The phase function

Lemma (2)

For any compact subset K ∈ R2 × R+, there exists a constant C(K)
independent of ε > 0, such that

sup
K

|vε| ≤ C(K).

Define the so-called half-relaxed limits
v∗(x, t) = lim sup

ε→0
(x′,t′)→(x,t)

vε(x′, t′)

v∗(x, t) = lim inf
ε→0

(x′,t′)→(x,t)

vε(x′, t′)
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Variational Inequality

Consider the following variational inequality :
min{T [v], v} = 0, x ∈ R, y ̸= 0, t > 0,
B[v] = 0, x ∈ R, y = 0, t > 0,
v(x, y, 0) = g0(x, y), x ∈ R2,

(2.1)

where T [v] = vt + |∇v|2 + 1, B[v] = 2av2x − [[vy]], and g0 is positive,
bounded, and Liptschitz continuous on R2.

Use the theory of viscosity solutions 8.

8. M. G Crandall, H. Ishii, and P-L. Lions., Bull. Amer. Math. Soc., 1992
Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 20 / 35



Variational Inequality

Consider the following variational inequality :
min{T [v], v} = 0, x ∈ R, y ̸= 0, t > 0,
B[v] = 0, x ∈ R, y = 0, t > 0,
v(x, y, 0) = g0(x, y), x ∈ R2,

(2.1)

where T [v] = vt + |∇v|2 + 1, B[v] = 2av2x − [[vy]], and g0 is positive,
bounded, and Liptschitz continuous on R2.

Use the theory of viscosity solutions 8.

8. M. G Crandall, H. Ishii, and P-L. Lions., Bull. Amer. Math. Soc., 1992
Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 20 / 35



Viscosity solutions

Definition
A upper (lower) semi-continuous function v (v) is a viscosity
subsolution (supersolution) of (2.1) on R2 × R+ if for any
ϕ ∈ C1(R2

+ × R+) ∩ C1(R2
− × R+) ∩ C(R2 × R+), assume v − ϕ (v − ϕ)

attains a strict maximum (minimum) at some (x, y, t) ∈ R2 × R+ and
v > 0(v > 0), then we have T [ϕ](x, y, t) ≤ 0(≥ 0) if y ̸= 0, and if y = 0,

min{T [ϕ](x, 0±, t),B[ϕ](x, 0, t)} ≤ 0(≥ 0).

v is a viscosity solution of (2.1) if v is both a subsolution and
supersolution.
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Comparison principle

Theorem (2.1)
Let v and v be a viscosity sub solution and super solution of (2.1)
respectively. If v is bounded above and v is bounded below, and
v(x, y, 0) ≤ v(x, y, 0), then v ≤ v on R2 × R+.
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Outline of the proof

Step 1. Obtain the estimate supK |vε| ≤ C(K) ;

Step 2. Show that v∗ and v∗ are subsolution and supersolution of
(HJ), respectively ; moreover, v∗ ≥ v∗.

Step 3. vε converges to v uniformly locally, and hence v is a
viscosity solution of (1.3).
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An optimal control problem

Recall the variational inequality (2.1), the viscosity solution exists and
is unique 9.

For any p = (p1, p2) ∈ R2, define

H(p) = |p|2 + 1, B(p1) = ap21.

Legendre transformation in the field and road are :

L(q) = sup
p∈R2

{q · p−H(p)} =
|q|2

4
− 1,

G(q1) = sup
p1∈R

{q1 · p1 −B(p1)} =
q21
4a

.

(3.1)

9. Indiana Univ. Math, 1989.
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An optimal control problem

Introduce a two player, zero-sum differential game :
consider an ordinary differential equation{

γ̇(τ) = f(τ, γ(τ), η(τ), l(τ)), τ ∈ (0, t),
γ(0) = x, x ∈ R× {y ̸= 0}. (3.2)

Player 1 : Find controls to minimize running-cost :∫ t

0
L(−η(τ)) + F (γ, η, l)(τ)dτ,

where F (γ, η, l)(τ) is the running-cost on the x-axis.

Player 2 : Stop the game and maximize running-cost.
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Optimal Controls (Player 1)

More preciously, define a control triple (γ, η, l) :

Control path γ = (γ1, γ2) ∈ AC([0, t],R2), γ(0) = x in the upper
half plane, and γ(τ) ∈ R× R+ ;

Control velocity : η = (η1, η2) ∈ L2([0, t],R2) ;

Local time : l ∈ L2([0, t],R),{
l(τ) ≥ 0 for a.e.τ ∈ [0, t]
l(τ) = 0 if l(τ) ∈ {y > 0}.
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Optimal Controls (Player 1)

Introduce a condition 10 : there exists a h ∈ L1([0, t],R) s.t.
the function : τ 7→ F (γ, η, l) := l(τ)G( (η1−γ̇1)

l (τ)),
is integrable on [0, t],
γ̇(τ) = η(τ) if l(τ) = 0 for a.e.τ ∈ [0, t],
|η2(τ)| = |γ̇2(τ)|+ l(τ) if l(τ) ̸= 0 for a.e.τ ∈ [0, t].

(H)

Denote N := {(γ, η, l)|(γ, η, l) satisfies (H )}.

10. G. Barles, H. Ishii, and H. Mitake, ARMA, 2012
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Stopping times (Player 2)

A stopping time is a mapping

θ : L2([0, t];R2) 7→ [0, t],

such that for all s ∈ [0, t], and γ, γ̂ ∈ L2([0, t];R2), if γ(τ) = γ̂(τ)
for a.e. τ ∈ [0, s] and θ(τ) ≤ s, then θ(γ) = θ(γ̂).

Θ is the set of all stopping times.
Define the upper value function :

I (x , t) = sup
θ∈Θ

inf
(γ,η,l)∈N

{∫ θ[γ]

0
L(−η(τ)) + F (γ, η, l)dτ

+ X{θ[γ]=t}g0(γ(t))
}
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The upper value function

I satisfies the dynamic programming principle 11, i.e. for any
σ ∈ [0, t],

I (x , t) = sup
θ∈Θ

inf
(γ,η,l)∈N

{∫ σ∧θ[γ]

0
L(−η(τ)) + F (γ, η, l)(τ)dτ

+ X{θ[γ]≥σ}I (γ(σ), t − σ)
}

Theorem
I is continuous on R2 ×R+ and a viscosity solution of (2.1). Moreover,
limt→0+ I (x , t) = g0 (x ).

11. L. C. Evans and P. E. Souganidis, India. Uni. Math. Jour., 1984
Xingri Geng A Hamilton-Jacobi Approach Nov 04, 2022 29 / 35



Limits of the phase function

Define

v(x, t) = sup
θ∈Θ

inf
(γ,η,l)∈N

{∫ θ[γ]

0
L(−η(τ)) + F (γ, η, l)(τ)dτ

∣∣γ(t) = (0, 0)
}

Theorem
v∗(x, t) ≤ v ≤ v∗ on R2 × [0,∞). Hence, v is the viscosity solution of
(HJ).

Brief Proof.
Step 1. Show that v∗ and v∗ are sub-solution and super-solution of
(HJ), respectively.
Step 2. Prove v∗(x, t) ≥ v(x, t).
Step 3. Prove v∗(x, t) ≤ v(x, t).
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Limits of the phase function

Define a payoff

J (x , y , t) = inf
(γ,η,l)∈N

{∫ θ[γ]

0
L(−η(τ)) + F (γ, η, l)(τ)dτ

∣∣γ(t) = (0 , 0 )
}
,

Then, we can prove v(x, y, t) = max{0, J (x , y , t)} by verifying the
Freidlin’s condition 12 :

J (x , y , t) = inf
(γ,η,l)∈N

{∫ θ[γ]

0
L(−η(τ)) + F (γ, η, l)(τ)dτ

∣∣
γ(t) = (0, 0), (γ(τ), t− τ) ∈ P

}
,

for (x, y, t) ∈ ∂P , where P := {J > 0}.

12. M. I. Freidlin, Princeton University Press, 1985
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Limits of the phase function

Theorem

J (x , y , t) = φ∗(x , y , t)− t ,

where

φ∗(x, y, t) = min
s≥0

{ x2

4(t+ as)
+

(|y|+ s)2

4t

}
.

The result was first proved by X.F. Chen, J.F. He, and X.F. Wang. 13

13. The asymptotic propagation speed of the Fisher-KPP equation with effective
boundary condition on a road, preprint
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Limits of the phase function

Brief proof :
Step 1. φ∗ is the lower-bound of J , i.e.

J (x , y , t) ≥ x 2

4 (t + as)
+

(|y |+ s)2

4t
− t ≥ φ∗.

Step 2. Find control triple to attain the lower-bound, i.e.

J (x , y , t) = φ∗.
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Ongoing : multiple roads

The full model :
ut −∇ · (σ̃∇u) = u(1− u), (x, y) ∈ R2, t > 0,
u(x, y, 0) = φ(x, y), (x, y) ∈ R2,
0 ≤ φ ≤ 1, φ ̸≡ 0, φ compactly supported

where

σ̃ =

{
σ, if y ∈ (1, 1 + δ) ∪ (−1− δ,−1),
1, else.
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THANK YOU !
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