Effective Boundary Conditions for the Fisher-KPP Equations

Xingri Geng

Main Supervisor: Professor Weizhu Bao Co-supervisors: Associate Professor Linlin Su Professor Xuefeng Wang

National University of Singapore April 18, 2024

Xingri Geng (NUS)

OUTLINE

1 Introduction

- **2** EBCs for the Heat Equation
- **3** EBCs for the Fisher-KPP Equation
- 4 EBCs for the System

5 Future Works

- 2 EBCs for the Heat Equation
- 3 EBCs for the Fisher-KPP Equation
- 4 EBCs for the System
- 5 Future Works

Xingri Geng (NUS)

-∃= >

Introduction

Motivations

Figure – Turbine Engine Blades (from A. Aabid, S.A. Khan, 2008).

Xingri Geng (NUS)

4/57

ヘロト 人間 とんぼう 人口 ど

Motivations

Nature Reserve (diffusion rate: small)

Road (diffusion rate: large)

Nature Reserve (diffusion rate: small)

Figure – Nature Reserve

Xingri Geng (NUS)

Introduction

Motivations

Figure – Cells (from A. Briegel et al., 2009).

Xingri Geng (NUS)

- Domain contains a thin component :
 - thermal barrier coatings for blades;
 - a road for nature reserve;
 - membrane for cells.

• Diffusion tensor on different components is drastically different :

- in coating model, diffusion tensor is small;
- in nature reserve model, diffusion rate is large;
- in cell model, diffusion rate in membrane is small.

- E - F

- Domain contains a thin component :
 - thermal barrier coatings for blades;
 - a road for nature reserve;
 - membrane for cells.

• Diffusion tensor on different components is drastically different :

- in coating model, diffusion tensor is small;
- in nature reserve model, diffusion rate is large;
- in cell model, diffusion rate in membrane is small.

• Issues :

- The multi-scale in size and different diffusion tensors lead to computational difficulty;
- It is hard to see the effect of the thin component;

• Resolution :

• Think of the thin component as widthless surface and impose "effective boundary conditions" (EBCs).

프 🖌 🔺 프 🕨

• Issues :

- The multi-scale in size and different diffusion tensors lead to computational difficulty;
- It is hard to see the effect of the thin component;
- Resolution :
 - Think of the thin component as widthless surface and impose "effective boundary conditions" (EBCs).

< ≣⇒

- 3 EBCs for the Fisher-KPP Equation
- 4 EBCs for the System
- 5 Future Works

Xingri Geng (NUS)

-≣->

EBCs for the heat equation

Geometry of Domain

Figure – $\Omega = \Omega_1 \cup \overline{\Omega}_{\delta} \subset \mathbb{R}^n$. $\partial \Omega \to \partial \Omega_1$ as $\delta \to 0$.

- Ω_{δ} : uniformly thick with thickness δ .
- Ω_1 : fixed with $\partial \Omega_1 (= \Gamma) \in C^2$.
- Use curvilinear coordinates (s, r) in Ω_{δ} :

$$x = p(s) + r\mathbf{n}(s), \quad \forall x \in \Omega_{\delta},$$

p-the projection of x onto $\partial\Omega_1$, **n**-unit outer normal vector of Ω_1 , r- distance from x to $\partial\Omega_1$, $s = (s_1, ..., s_{n-1})$ - local coordinates.

Xingri Geng (NUS)

EBCs for the Heat Equation Full Model

For any fixed T > 0, u := u(x, t) satisfies

$$\begin{cases} u_t - \nabla \cdot (A(x)\nabla u) = f(x,t), & x \in \Omega, t \in (0,T), \\ u = 0, & x \in \partial\Omega, t \in (0,T), \\ u(x,0) = u_0(x), & x \in \Omega. \end{cases}$$

•
$$u_0 \in L^2(\Omega), f \in L^2(\Omega \times (0,T));$$

• Transmission conditions on $\partial \Omega_1 \times (0,T)$:

$$u_1 = u_\delta, \ k \frac{\partial u_1}{\partial \mathbf{n}} = A(x) \nabla u_\delta \cdot \mathbf{n},$$

 u_1, u_{δ} - the restrictions of u on $\Omega_1 \times (0, T)$ and $\Omega_{\delta} \times (0, T)$; Goal : given some assumptions on the diffusion tensor $A(x), u \to \text{some}$ v as $\delta \to 0$ with some EBCs satisfied.

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book *Conduction of Heat in Solids*;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor A(x) is isotropic in the layer.

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book *Conduction of Heat in Solids*;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor A(x) is isotropic in the layer.

< 臣 > (臣 >)

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book *Conduction of Heat in Solids*;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor A(x) is isotropic in the layer.

くヨト くヨト

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book *Conduction of Heat in Solids*;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor A(x) is isotropic in the layer.

《문》 《문》

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book *Conduction of Heat in Solids*;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor A(x) is isotropic in the layer.

프 에 에 프 어 - -

- In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

- In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

くヨト くヨト

- In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

くほう くほう

- In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

くほう くほう

- In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

프 에 에 프 어 - -

EBCs for the Heat Equation Assumptions on A(x)

In our case, let n = 3, and

$$A(x) = \begin{cases} kI_{3\times3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times3}, & x \in \Omega_\delta. \end{cases}$$

- k > 0 constant, $(a_{ij})_{3 \times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned"¹: for any $x \in \Omega_{\delta}$, the normal vector $\mathbf{n}(p)$ is always an eigenvector of A(x).
- A(x) satisfies :

 $A(x)\mathbf{n}(p) = \sigma\mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1\boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2\boldsymbol{\tau}_2(p),$

- $\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$ two eigenvectors of A(x);
- σ "normal diffusion rate";
- μ_1, μ_2 "tangential diffusion rate".

1. S. Rosencrans and X. Wang, SIAM J. Appl. Math, 2006 () () ()

EBCs for the Heat Equation Assumptions on A(x)

In our case, let n = 3, and

$$A(x) = \begin{cases} kI_{3\times3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times3}, & x \in \Omega_\delta. \end{cases}$$

- k > 0 constant, $(a_{ij})_{3 \times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned"¹: for any $x \in \Omega_{\delta}$, the normal vector $\mathbf{n}(p)$ is always an eigenvector of A(x).
- A(x) satisfies :

 $A(x)\mathbf{n}(p) = \sigma\mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1\boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2\boldsymbol{\tau}_2(p),$

- $\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$ two eigenvectors of A(x);
- σ "normal diffusion rate";
- μ_1, μ_2 "tangential diffusion rate".
- 1. S. Rosencrans and X. Wang, SIAM J. Appl. Math, 2006 () () ()

Xingri Geng (NUS)

Effective boundary conditions

14/57

EBCs for the Heat Equation Assumptions on A(x)

In our case, let n = 3, and

$$A(x) = \begin{cases} kI_{3\times3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times3}, & x \in \Omega_\delta. \end{cases}$$

- k > 0 constant, $(a_{ij})_{3 \times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned"¹: for any $x \in \Omega_{\delta}$, the normal vector $\mathbf{n}(p)$ is always an eigenvector of A(x).
- A(x) satisfies :

 $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p),$

- $\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$ two eigenvectors of A(x);
- σ "normal diffusion rate";
- μ_1, μ_2 "tangential diffusion rate".

 1. S. Rosencrans and X. Wang, SIAM J. Appl. Math. 2006 B + E + E + E - SQC

 Xingri Geng (NUS)
 Effective boundary conditions

 14/57

EBCs for the Heat Equation Two assumptions of A(x)

• Case 1. $\mu_1 = \mu_2$. Assume A(x) satisfies

$$A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), \quad A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \quad \forall x \in \Omega_{\delta},$$

where $(\sigma, \mu) = (\sigma(\delta), \mu(\delta))$; $\mathbf{n}(p)$ – unit outer normal vector of Ω_1 , $\mathbf{s}(p)$ – arbitrary tangent vector at p on $\partial\Omega_1$.

• Case 2. $\mu_1 \neq \mu_2$. Assume $\partial \Omega_1 = \mathbb{T}^2$, and A(x) satisfies

> $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p),$ $A(x)\boldsymbol{\tau}_1(p) = \mu_1\boldsymbol{\tau}_1(p),$ $A(x)\boldsymbol{\tau}_2(p) = \mu_2\boldsymbol{\tau}_2(p).$

くほう くほう

EBCs for the Heat Equation Two assumptions of A(x)

• Case 1. $\mu_1 = \mu_2$. Assume A(x) satisfies

$$A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), \quad A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \quad \forall x \in \Omega_{\delta},$$

where $(\sigma, \mu) = (\sigma(\delta), \mu(\delta))$; $\mathbf{n}(p)$ – unit outer normal vector of Ω_1 , $\mathbf{s}(p)$ – arbitrary tangent vector at p on $\partial\Omega_1$.

• Case 2. $\mu_1 \neq \mu_2$. Assume $\partial \Omega_1 = \mathbb{T}^2$, and A(x) satisfies

$$A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p),$$

$$A(x)\boldsymbol{\tau}_1(p) = \mu_1\boldsymbol{\tau}_1(p),$$

$$A(x)\boldsymbol{\tau}_2(p) = \mu_2\boldsymbol{\tau}_2(p).$$

토 🕨 🗶 토 🕨 👘

EBCs for the Heat Equation Weak solution

Denote
$$Q_T := \Omega \times (0,T)$$
 and $S_T := \partial \Omega \times (0,T)$.
• $W_2^{1,0}(Q_T) = \left\{ u \in L^2(Q_T) \middle| \nabla u \in L^2(Q_T) \right\}$ and $W_{2,0}^{1,0}(Q_T)$ is the closure of C^{∞} functions vanishing near \overline{S}_T in $W_2^{1,0}(Q_T)$ -norm.
• $V_{2,0}^{1,0}(Q_T) = W_{2,0}^{1,0}(Q_T) \cap C([0,T]; L^2(\Omega))$.

Definition

u is a weak solution of the heat equation, if $u \in V_{2,0}^{1,0}(Q_T)$ and

$$\mathcal{A}[u,\xi] = -\int_{\Omega} u_0(x)\xi(x,0)dx + \int_{Q_T} (A(x)\nabla u) \cdot \nabla\xi - u\xi_t - f\xi dtdx$$

=0

for any $\xi \in W_{2,0}^{1,1}(Q_T)$ satisfying $\xi = 0$ at t = T.

Xingri Geng (NUS)

16 / 57

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

(Recall
$$A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}.$$
)

Theorem

 a Let

$$\lim_{\delta \to 0} \frac{\sigma}{\delta} = \alpha \in [0, \infty] \text{ and } \lim_{\delta \to 0} \sigma \mu = \gamma \in [0, \infty].$$

As $\delta \to 0$, $u \to v$ in $C([0,T]; L^2(\Omega))$, where v := v(x,t) is the unique solution of the effective problem

$$\begin{cases} v_t - k\Delta v = f(x, t), & x \in \Omega_1, t \in (0, T), \\ v(x, 0) = u_0(x), & x \in \Omega_1, \end{cases}$$

with the EBCs listed in the table below :

a. X. Geng, preprint, 2023

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

As $\delta \to 0$	$\frac{\sigma}{\delta} \to 0$	$\frac{\sigma}{\delta} \to \alpha \in (0,\infty)$	$\frac{\sigma}{\delta} \to \infty$
$\sigma\mu \to 0$	$\frac{\partial v}{\partial \mathbf{n}} = 0$	$k\frac{\partial v}{\partial \mathbf{n}} = -\alpha v$	v = 0
$\sqrt{\sigma\mu} \to \gamma \in (0,\infty)$	$k \frac{\partial v}{\partial \mathbf{n}} = \gamma \mathcal{J}_D^\infty[v]$	$k rac{\partial v}{\partial \mathbf{n}} = \gamma \mathcal{J}_D^{\gamma/lpha}[v]$	v = 0
$\sigma\mu \to \infty$	$\nabla_{\Gamma}v=0,$	$ abla_{\Gamma}v=0$,	v = 0
	$\int_{\Gamma} \frac{\partial v}{\partial \mathbf{n}} = 0$	$\int_{\Gamma} (k \frac{\partial v}{\partial \mathbf{n}} + \alpha v) = 0$	

- \mathbf{n} unit outer normal vector of Γ .
- ∇_{Γ} the surface gradient operator.
- $\mathcal{J}_D^{\gamma/\alpha}$ a Dirichlet-to-Neumann mapping.

< 注入 < 注入 = 注

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

Given a smooth function g(s) and $H \in (0, \infty)$, define

 $\mathcal{J}_D^H[g] := \Psi_R(s, 0),$

where $\Psi := \Psi(s, R)$ is the unique solution of

$$\begin{cases} \Psi_{RR} + \Delta_{\Gamma} \Psi = 0, & \Gamma \times (0, H), \\ \Psi(s, 0) = g(s), & \Psi(s, H) = 0. \end{cases}$$

Moreover,

$$\mathcal{J}_D^H[g](s) = -\sum_{n=1}^{\infty} \frac{\sqrt{\lambda_n} e_n(s) g_n}{\tanh(\sqrt{\lambda_n} H)}, \\ \mathcal{J}_D^{\infty} = \lim_{H \to \infty} \mathcal{J}_D^H = -(-\Delta_{\Gamma})^{1/2}.$$

 $\lambda_n, e_n(s)$ - the eigenvalues and the corresponding eigenfunctions of the Laplacian-Beltrami $-\Delta_{\Gamma}$, and $g_n := \langle e_n, g \rangle$.

Xingri Geng (NUS)

- Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of δ , $u \rightarrow v$.
- Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

3 1 4 3 1

- Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of δ , $u \rightarrow v$.
- Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

프 🖌 🔺 프 🕨

- Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of δ , $u \rightarrow v$.
- Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

3 N K 3 N

- Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of δ , $u \rightarrow v$.
- Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..
Step 3. For given ξ that is the test function of heat equation, $\xi \in C^{\infty}(\overline{\Omega}_1 \times (0, T)).$

Take a new test function 2

$$\overline{\xi}(x,t) = \begin{cases} \xi(x,t), & \Omega_1, \\ \psi(x,t), & \overline{\Omega}_{\delta}, \end{cases}$$

where $\psi := \psi(s, r, t)$ is the unique solution of

$$\begin{cases} \sigma \psi_{rr} + \mu \Delta_{\Gamma} \psi = 0, \quad \Gamma \times (0, \delta), \\ \psi(s, 0, t) = \xi(s, 0, t) \quad \psi(s, \delta, t) = 0. \end{cases}$$

2. X. Chen, C. Pond, and X. Wang, ARMA, 2012

Xingri Geng (NUS)

Effective boundary conditions

21/57

(문) (문) 문

• By the weak solution of heat equation, it holds

$$\begin{split} &\int_0^T \int_{\Omega_1} k \nabla \xi \cdot \nabla u dx dt - \int_{\Omega} u_0(x) \overline{\xi}(x,0) dx - \int_0^T \int_{\Omega} (u \overline{\xi_t} + f \overline{\xi}) dx dt \\ &= -\int_0^T \int_{\Omega_\delta} \nabla \psi \cdot A(x) \nabla u dx dt. \end{split}$$

• EBCs arise on the right-hand side.

Remark:

• If the layer is of interior inclusion, EBCs are also derived ³.

22/57

^{3.} X. Geng, CPAA, 2023

(Recall $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p).$)

Theorem

^a Suppose
$$\Gamma = \mathbb{T}^2 = \Gamma_1 \times \Gamma_2$$
 and $\mu_1 > \mu_2$.
Let

$$\lim_{\delta \to 0} \frac{\mu_2}{\mu_1} = c \in [0, 1], \quad \lim_{\delta \to 0} \frac{\sigma}{\delta} = \alpha \in [0, 1],$$
$$\lim_{\delta \to 0} \sigma \mu_i = \gamma_i \in [0, \infty], \quad \lim_{\delta \to 0} \mu_i \delta = \beta_i \in [0, \infty], \quad i = 1, 2.$$

a. X. Geng, preprint, 2023

《글》 《글》

Theorem

(i) If $c \in (0, 1]$, then as $\delta \to 0$, $u \to v$ in $C([0, T]; L^2(\Omega_1))$, where v := v(x, t) is the solution of the effective problem with the EBCs listed in the following table :

As $\delta \to 0$	$\frac{\sigma}{\delta} \to 0$	$\frac{\sigma}{\delta} \to \alpha \in (0,\infty)$	$\frac{\sigma}{\delta} \to \infty$
$\sigma\mu_1 \to 0$	$\frac{\partial v}{\partial \mathbf{n}} = 0$	$k\frac{\partial v}{\partial \mathbf{n}} = -\alpha v$	v = 0
$\sqrt{\sigma\mu_1} \to \gamma_1 \in (0,\infty)$	$k \frac{\partial v}{\partial \mathbf{n}} = \gamma_1 \mathcal{K}_D^{\infty}[v]$	$k rac{\partial v}{\partial \mathbf{n}} = \gamma_1 \mathcal{K}_D^{\gamma_1/lpha}[v]$	v = 0
$\sigma\mu_1 \to \infty$	$\nabla_{\Gamma} v = 0,$	$\nabla_{\Gamma}v=0,$	v = 0
	$\int_{\Gamma} \frac{\partial v}{\partial \mathbf{n}} = 0$	$\int_{\Gamma} (k \frac{\partial v}{\partial \mathbf{n}} + \alpha v) = 0$	v = 0

24/57

EBCs for the Heat Equation Case $2: \mu_1 \neq \mu_2$

Theorem

(ii) If c = 0, $\lim_{\delta \to 0} \delta^2 \mu_1 / \mu_2 = 0$, then $u \to v$ in $C([0,T]; L^2(\Omega_1))$, where v is the solution of the effective problem with the EBCs listed in the table :

As $\delta \to 0$	$\frac{\sigma}{\delta} \to 0$	$\frac{\sigma}{\delta} \to \alpha \in (0,\infty)$	$\frac{\sigma}{\delta} \to \infty$
$\sigma\mu_1 \to 0$	$\frac{\partial v}{\partial \mathbf{n}} = 0$	$k \frac{\partial v}{\partial \mathbf{n}} = -\alpha v$	v = 0
$\sqrt{\sigma\mu_1} \to \gamma_1 \in (0,\infty)$	$k\frac{\partial v}{\partial \mathbf{n}}=\gamma_1\Lambda_D^\infty[v]$	$k \frac{\partial v}{\partial \mathbf{n}} = \gamma_1 \Lambda_D^{\gamma_1/\alpha}[v]$	v = 0
$\sigma \mu_1 \to \infty, \sigma \mu_2 \to 0$	$\frac{\partial v}{\partial \tau_1} = 0,$	$\frac{\partial v}{\partial \boldsymbol{\tau}_1} = 0,$	v = 0
ομ ₁ , σο, σμ ₂ , σ	$\int_{\Gamma_1} \frac{\partial v}{\partial \mathbf{n}} = 0$	$\int_{\Gamma_1} \left(\frac{\partial v}{\partial \mathbf{n}} + \alpha v \right) = 0$	
$\sigma \to \infty$	$\frac{\partial v}{\partial \tau_1} = 0,$	$\frac{\partial v}{\partial \boldsymbol{ au}_1} = 0$,	
$\delta \mu_1 \to \infty,$	$\int_{\Gamma_1} \left(k \frac{\partial v}{\partial \mathbf{n}} - \gamma_2 \mathcal{D}_D^{\infty}[v] \right)$	$\int_{\Gamma_1} \left(k \frac{\partial v}{\partial \mathbf{n}} - \gamma_2 \mathcal{D}_D^{\gamma_2/\alpha}[v] \right)$	v = 0
$\sqrt{\sigma} \mu_2 \rightarrow \gamma_2 \in (0,\infty)$	= 0	= 0	
	$\nabla_{\Gamma} v = 0,$	$\nabla_{\Gamma}v=0,$	w = 0
$\sigma \mu_1 \to \infty, \sigma \mu_2 \to \infty$	$\int_{\Gamma} \frac{\partial v}{\partial \mathbf{n}} = 0$	$\int_{\Gamma} \frac{\partial v}{\partial \mathbf{n}} = 0$	v = 0
Kingri Geng (NUS)	Effective boundary conditions $25/57$		

EBCs for the Heat Equation Case 2 : $\mu_1 \neq \mu_2$

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always v = 0).
- If $\sigma \mu_1 \to \gamma_1 \in [0, \infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth g and for $H \in (0, \infty)$, define

 $\mathcal{K}_D^H[g](s) := \Phi_R(s, 0),$

where Φ is the unique bounded solution of

$$\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}$$

EBCs for the Heat Equation Case 2 : $\mu_1 \neq \mu_2$

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always v = 0).
- If $\sigma \mu_1 \to \gamma_1 \in [0, \infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth g and for $H \in (0, \infty)$, define

 $\mathcal{K}_D^H[g](s) := \Phi_R(s, 0),$

where Φ is the unique bounded solution of

$$\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}$$

프 🖌 🛪 프 🕨

EBCs for the Heat Equation Case 2 : $\mu_1 \neq \mu_2$

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always v = 0).
- If $\sigma \mu_1 \to \gamma_1 \in [0, \infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth g and for $H \in (0, \infty)$, define

$$\mathcal{K}_D^H[g](s) := \Phi_R(s, 0),$$

where Φ is the unique bounded solution of

$$\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}$$

Xingri Geng (NUS)

26/57

• $\Lambda_D^H[g](s) := \Phi_R^0(s,0)$, where Φ^0 is the unique bounded solution of

$$\left\{ \begin{array}{ll} \Phi^0_{RR} + \Phi^0_{s_1s_1} = 0, & \Gamma \times (0, H), \\ \Phi^0(s, 0) = g(s), & \Phi^0(s, H) = 0. \end{array} \right.$$

• $\mathcal{D}_D^H[g](s_2) := \Phi_R(s_2, 0)$, where Φ is the unique bounded solution of

$$\begin{cases} \Phi_{RR} + \Phi_{s_2s_2} = 0, & \Gamma_2 \times (0, H), \\ \Phi(s_2, 0) = g(s_2), & \Phi(s_2, H) = 0. \end{cases}$$

Xingri Geng (NUS)

《日》 《日》 - 日

• The proof is similar to that in Case 1.

• Step 3. Construct an auxiliary function ϕ by defining

$$\begin{cases} \sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\ \phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0. \end{cases}$$

• Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$\left\{ \begin{array}{ll} \Phi^{\delta}_{RR} + \Phi^{\delta}_{s_{1}s_{1}} + \frac{\mu_{2}}{\mu_{1}} \Phi^{\delta}_{s_{2}s_{2}} = 0, & \Gamma \times (0, h_{1}), \\ \Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_{1}) = 0. \end{array} \right.$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

- The proof is similar to that in Case 1.
- Step 3. Construct an auxiliary function ϕ by defining

$$\begin{cases} \sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\ \phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0. \end{cases}$$

• Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$\begin{cases} \Phi_{RR}^{\delta} + \Phi_{s_1s_1}^{\delta} + \frac{\mu_2}{\mu_1} \Phi_{s_2s_2}^{\delta} = 0, & \Gamma \times (0, h_1), \\ \Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_1) = 0, \end{cases}$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

不良す 不良す

- The proof is similar to that in Case 1.
- Step 3. Construct an auxiliary function ϕ by defining

$$\begin{cases} \sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\ \phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0. \end{cases}$$

• Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$\left\{ \begin{array}{ll} \Phi_{RR}^{\delta} + \Phi_{s_1s_1}^{\delta} + \frac{\mu_2}{\mu_1} \Phi_{s_2s_2}^{\delta} = 0, & \Gamma \times (0, h_1), \\ \Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_1) = 0, \end{array} \right.$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

(米度) (★度) (●度

Error Estimates

(Recall
$$A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}.$$
)

Theorem

Let $\sigma \mu \to 0$ and $\frac{\sigma}{\delta} \to \alpha \in [0,\infty)$ as $\delta \to 0$. Thus, the EBC is

$$\frac{\partial v}{\partial \boldsymbol{n}} + \alpha v = 0.$$

Under some assumptions on $\partial \Omega_1, u_0, f$, the following holds. (i) If $\alpha \in (0, \infty)$, then

$$||u(\cdot,t) - v(\cdot,t)||_{L^2(\Omega_1)}^2 \le C\left(\left|\frac{\sigma}{\delta} - \alpha\right| + \sqrt{\delta} + \sqrt{\sigma\mu}\right).$$

(ii) If $\alpha = 0$, then

$$||u(\cdot,t) - v(\cdot,t)||_{L^2(\Omega_1)}^2 \le C\left(\sqrt{\sigma\mu t e^t} + \sqrt{\delta t e^t} + \frac{\sigma t e^t}{\delta}\right)$$

Error Estimates

Figure – An illustration of $||u(\cdot, t) - v(\cdot, t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

• Question : what is the maximal interval that keeps u and v close?

- Answer : consider the steady state of u and v.
- A typical example : the EBC is a Neumann condition.

Error Estimates

Figure – An illustration of $||u(\cdot, t) - v(\cdot, t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

Question : what is the maximal interval that keeps u and v close?
Answer : consider the steady state of u and v.

• A typical example : the EBC is a Neumann condition.

Error Estimates

Figure – An illustration of $||u(\cdot,t) - v(\cdot,t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

- Question : what is the maximal interval that keeps u and v close?
- Answer : consider the steady state of u and v.
- A typical example : the EBC is a Neumann condition.

3 EBCs for the Fisher-KPP Equation

4 EBCs for the System

5 Future Works

Xingri Geng (NUS)

Effective boundary conditions

< ∃⇒

EBCs for the Fisher-KPP Equation $_{\rm Full\ Model}$

(Recall $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}$.) For any fixed T > 0, u := u(x, t) satisfies

$$\begin{cases} u_t - \nabla \cdot (A(x)\nabla u) = f(u), & x \in \Omega, t \in (0,T), \\ u = 0, & x \in \partial\Omega, t \in (0,T), \\ u(x,0) = u_0(x), & x \in \Omega. \end{cases}$$

•
$$0 \le u_0 \in L^{\infty}(\Omega), f(u) = u(1-u).$$

• Transmission conditions :

$$u_1 = u_\delta, \ k \frac{\partial u_1}{\partial \mathbf{n}} = A(x) \nabla u_\delta \cdot \mathbf{n}.$$

 u_1, u_{δ} - the restrictions of u on $\Omega_1 \times (0, T)$ and $\Omega_{\delta} \times (0, T)$. The derivation of EBCs is similar to that in the heat equation

EBCs for the Fisher-KPP Equation

Maximal Interval

Theorem

As $\delta \to 0$, u satisfies

$$\max_{0 \le t \le \infty} ||u(\cdot, t) - v(\cdot, t)||_{L^2(\Omega_1)} \to 0,$$

where v is the solution of the effective problem with any EBC as follows.

Xingri Geng (NUS)

Effective boundary conditions

The idea is to consider the steady state of u and v.

• Consider

$$\left\{ \begin{array}{ll} -\nabla \cdot (A(x)\nabla U) = U(1-U), & x \in \Omega, \\ U = 0, & x \in \partial \Omega, \end{array} \right.$$

where U := U(x) is the unique positive solution.

• V := V(x) is the unique positive solution of

$$-k\Delta V = V(1-V), x \in \Omega_1,$$

with the EBCs listed in the above table (with v replaced by V).

-∢ ≣⇒

EBCs for the Fisher-KPP equation

The proof of the theorem

Outline of the proof :

- $||u(\cdot,t) U||_{L^2(\Omega)}$ is decreasing in t.
- For any $t \geq T_{\varepsilon}$,

$$\begin{split} ||u(\cdot,t) - U||_{L^{2}(\Omega_{1})} \\ &\leq ||u(\cdot,t) - U||_{L^{2}(\Omega)} \\ &\leq ||u(\cdot,T_{\varepsilon}) - v(\cdot,T_{\varepsilon})||_{L^{2}(\Omega_{1})} + ||v(\cdot,T_{\varepsilon}) - V||_{L^{2}(\Omega_{1})} \\ &+ ||U - V||_{L^{2}(\Omega_{1})} + ||u(\cdot,T_{\varepsilon}) - U||_{L^{2}(\Omega_{2})} \\ &\leq C\varepsilon. \end{split}$$

프 🖌 🛪 프 🕨

EBCs for the Fisher-KPP equation Outline of the proof

• Finally, for a small $\delta > 0$,

$$\begin{split} \max_{t\in[T_{\varepsilon},\infty]} &||u(\cdot,t)-v(\cdot,t)||_{L^{2}(\Omega_{1})} \\ \leq \max_{t\in[T_{\varepsilon},\infty]} &||u(\cdot,t)-U||_{L^{2}(\Omega_{1})} + \max_{t\in[T_{\varepsilon},\infty]} ||v(\cdot,t)-V||_{L^{2}(\Omega_{1})} \\ &+ ||U-V||_{L^{2}(\Omega_{1})} \\ \leq ||u(\cdot,T_{\varepsilon})-U||_{L^{2}(\Omega_{1})} + \max_{t\in[T_{\varepsilon},\infty]} ||v(\cdot,t)-V||_{L^{2}(\Omega_{1})} + ||U-V||_{L^{2}(\Omega_{1})} \\ \leq C\varepsilon. \end{split}$$

- 2 EBCs for the Heat Equation
- 3 EBCs for the Fisher-KPP Equation
- 4 EBCs for the System

Xingri Geng (NUS)

5 Future Works

< ∃⇒

EBCs for the System

Geometry of Domain

Denote $\mathbb{R}^2_- := \{(x, y) : x \in \mathbb{R}, y < 0\}$ and $\Gamma_1 := \{(x, y) : x \in \mathbb{R}, y = 0\}.$

Figure $-\Omega_{\delta} \subset \mathbb{R}^2$ is uniformly thick with thickness δ . $\Gamma_2 \to \Gamma_1$ as $\delta \to 0$.

Xingri Geng (NUS)

38 / 57

EBCs for the System Full Model

Consider the coupled Fisher-KPP equations (the Lotka-Volterra competition diffusion system) in \mathbb{R}^2

$$\begin{cases} \partial_t u_1 - \nabla \cdot (D_1(x, y) \nabla u_1) = f_1(u_1, u_2), & (x, y) \in \mathbb{R}^2, t > 0, \\ \partial_t u_2 - \nabla \cdot (D_2(x, y) \nabla u_2) = f_2(u_1, u_2), & (x, y) \in \mathbb{R}^2, t > 0, \\ (u_1, u_2)(x, y, 0) = (u_{1,0}, u_{2,0})(x, y), & (x, y) \in \mathbb{R}^2, \end{cases}$$

where

•
$$u_1 := u_1(x, y, t), u_2 := u_2(x, y, t),$$

- $f_1(u_1, u_2) = r_1 u_1(1 u_1 b_1 u_2), f_2(u_1, u_2) = r_2 u_2(1 u_2 b_2 u_1),$
- $b_1, b_2 \in (0, 1)$, the initial value $u_{k,0}(k = 1, 2)$ satisfying

$$\begin{cases} 0 \le u_{k,0} \le 1, u_{k,0} \not\equiv 0, \\ u_{k,0} \text{ are } C^{\infty} - \text{ smooth, and compactly supported.} \end{cases}$$

(종료) 종료) 문

EBCs for the System

Assumptions on $D_k(x, y)$

Let

$$D_k(x,y) = \begin{cases} a_{ij}^k(x,y), & \text{if } y \in (0,\delta), \\ d_k, & \text{otherwise.} \end{cases}$$

• $d_k > 0$ are constants, $a_{ij}^k(x, y)$ is positive-definite and satisfies the optimally aligned condition in the road :

$$D_k(x,y)\mathbf{n}(x) = \sigma_k \mathbf{n}(x), D_k(x,y)\mathbf{s}(x) = \mu_k \mathbf{s}(x), \ \forall y \in (0,\delta),$$

where $\mathbf{n}(x) = (0, 1), \mathbf{s}(x) = (1, 0).$

Motivated by the work of Li and Wang⁴, we have the existence and uniqueness of the system.

Theorem

For any fixed T > 0, the system admits a unique bounded solution

$$u_k \in V_2^{1,1}(\mathbb{R}^2 \times (0,T)), \ k = 1, 2.$$

Moreover, $0 \leq u_k \leq M$ for some M independent of δ , and

 $u_k \in C^\infty_{loc}\left(\overline{\Omega}_\delta \times (0,T)\right) \cap C^\infty_{loc}\left(\overline{R}_\delta \times (0,T)\right) \cap C^\infty_{loc}\left(\overline{\Omega}_- \times (0,T)\right).$

Xingri Geng (NUS)

Effective boundary conditions

프 🖌 🛪 프 🕨

^{4.} H. Li and X. Wang, Nonlinearity, 2017

Theorem

For any fixed T > 0, and k = 1, 2, let

$$\lim_{\delta \to 0} \sigma_k \mu_k = \gamma_k \in [0, \infty], \ \lim_{\delta \to 0} \frac{\sigma_k}{\delta} = \alpha_k \in [0, \infty], \ \lim_{\delta \to 0} \mu_k \delta = \beta_k \in [0, \infty].$$

Then $(u_1, u_2) \to (v_1, v_2)$ in $C([0, T], L^2_{loc}(\mathbb{R}^2)) \times C([0, T], L^2_{loc}(\mathbb{R}^2))$ as $\delta \to 0$, where (v_1, v_2) is the solution of the effective system

$$\begin{cases} \partial_t v_1 - d_1 \Delta u_1 = r_1 v_1 (1 - v_1 - b_1 v_2), & x \in \mathbb{R}, y \neq 0, t > 0, \\ \partial_t v_2 - d_2 \Delta v_2 = r_2 v_2 (1 - v_2 - b_2 v_1), & x \in \mathbb{R}, y \neq 0, t > 0, \\ (v_1, v_2)(x, y, 0) = (u_{1,0}, u_{2,0})(x, y), & (x, y) \in \mathbb{R}^2, \end{cases}$$

with the EBCs listed below.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

EBCs for the System Derivation of EBCs

$$\begin{aligned} & \text{Case 1. } \frac{\sigma_k}{\delta} \to 0 \text{ as } \delta \to 0. \end{aligned}$$

$$\begin{aligned} & \text{As } \delta \to 0 \qquad \gamma_k = 0 \qquad \gamma_k \in (0,\infty) \qquad \gamma_k = \infty \end{aligned}$$

$$\begin{aligned} & \beta_k \in [0,\infty) \qquad \frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y} = 0 \qquad ------ \qquad ------ \end{aligned}$$

$$\begin{aligned} & \beta_k = \infty \qquad \frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y} = 0 \qquad \frac{\partial v_k^-}{\partial y} = \gamma_k \mathcal{J}_1^\infty[v_k^-], \\ & \frac{\partial v_k^+}{\partial y} = -\gamma_k \mathcal{J}_1^\infty[v_k^+] \qquad v_k^- = v_k^+ = 0 \end{aligned}$$

- The dash lines mean such cases do not exist.
- v_k^- and v_k^+ : the restrictions of v_k on $\mathbb{R}^2_- \times (0,T)$ and $\mathbb{R}^2_+ \times (0,T)$.

-< 夏→

EBCs for the System Derivation of EBCs

Case 2. $\frac{\sigma_k}{\delta} \to \alpha_k \in (0,\infty)$ as $\delta \to 0$.					
As $\delta \to 0$	$\gamma_k = 0$	$\gamma_k \in (0,\infty)$	$\gamma_k = \infty$		
$\beta_k = 0$	$\begin{split} \frac{\frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y},\\ d_k \frac{\partial v_k^-}{\partial y} = \alpha_k (v_k^+ - v_k^-) \end{split}$				
$\beta_k \in (0,\infty)$		$\begin{aligned} d_k \frac{\partial v_k^-}{\partial y} &= \gamma_k \mathcal{J}_1^{\beta_k/\gamma_k} [v_k^-] \\ &- \gamma_k \mathcal{J}_2^{\beta_k/\gamma_k} [v_k^+], \\ d_k \frac{\partial v_k^+}{\partial y} &= \gamma_k \mathcal{J}_2^{\beta_k/\gamma_k} [v_k^-] \\ &- \gamma_k \mathcal{J}_1^{\beta_k/\gamma_k} [v_k^+] \end{aligned}$			
$\beta_k = \infty$			$v_k^- = v_k^+ = 0$		

Xingri Geng (NUS)

44/57

< 注入 < 注入

3

Case 3. $\frac{\sigma_k}{\delta} \to \infty$ and $\sigma_k \delta^3 \to 0$ as $\delta \to 0$.				
As $\delta \to 0$	$\gamma_k \in [0,\infty)$	$\gamma_k = \infty$		
$\beta_k = 0$	$v_k^- = v_k^+, rac{\partial v_k^-}{\partial y} = rac{\partial v_k^+}{\partial y}$	$v_k^- = v_k^+, \frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y}$		
$\beta_k \in (0,\infty)$		$egin{aligned} &v_k^- = v_k^+,\ &d_k(rac{\partial v_k^-}{\partial y} - rac{\partial v_k^+}{\partial y}) = eta_k \partial_{xx} v_k^+ \end{aligned}$		
$\beta_k = \infty$		$v_k^- = v_k^+ = 0$		

• The condition $\sigma_k \delta^3 \to 0$ can be removed if $\frac{\mu_k}{\sigma_k} \not\rightarrow 0$.

▶ 米度▶ 米度▶ 二度

EBCs for the System

• $\mathcal{J}_1^{\beta/\gamma}, \mathcal{J}_2^{\beta/\gamma}$ – the Dirichlet-to-Neumann mapping.

• For $H \in (0, \infty)$ and smooth g on \mathbb{R} , define

$$\mathcal{J}_1^H[g] := \Psi_Y(x, 0) \text{ and } \mathcal{J}_2^H[g] := \Psi_Y(x, H),$$

where Ψ is the unique solution of

$$\begin{cases} \Psi_{YY} + \Psi_{xx} = 0, \quad \mathbb{R} \times (0, H), \\ \Psi(x, 0) = g(x), \quad \Psi(x, H) = 0. \end{cases}$$

• Moreover,

$$\mathcal{J}_1^{\infty}[g] = \lim_{H \to \infty} \mathcal{J}_1^H[g] := -\left(-\partial_{xx}\right)^{1/2} g, \ \mathcal{J}_2^{\infty}[g] = \lim_{H \to \infty} \mathcal{J}_2^H[g] = 0,$$

where $(-\partial_{xx})^{1/2}g$ is the fractional Laplacian of order 1/2.

(공급) 공급) 문

EBCs for the System

Consider the Lotka-Volterra competition diffusion system :

$$\begin{cases} \partial_t v_1 - \Delta v_1 = v_1(1 - v_1 - b_1 v_2), & x \in \mathbb{R}, y \neq 0, t > 0, \\ \partial_t v_2 - d\Delta v_2 = r v_2(1 - v_2 - b_2 v_1), & x \in \mathbb{R}, y \neq 0, t > 0, \\ [v_1] = 0, [(v_1)_y] = -2a_1(v_1)_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\ [v_2] = 0, [d(v_2)_y] = -2a_2(v_2)_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\ (v_1, v_2)(x, y, 0) = (v_{10}, v_{20})(x, y), & (x, y) \in \mathbb{R}^2, \end{cases}$$

where

.

•
$$[v_1]\Big|_{y=0} := v_1(x, 0+, t) - v_1(x, 0-, t);$$

• $dr > 1, b_1, b_2 \in (0, 1)$ and $a_1, a_2 \in (0, \infty)$ with $a_1 \ll a_2$;

• the initial value (v_{10}, v_{20}) satisfies

$$\begin{cases} 0 \le v_{10} \le 1, v_{10} \ne 0, \\ 0 \le v_{20} \le 1, v_{20} \ne 0, \\ v_{10}, v_{20} \text{ are compactly supported.} \end{cases}$$

프 🖌 🔺 프 🕨

If no competition effect, the Fisher-KPP equation with a Wenztel-type boundary condition (can seen as an EBC) reads as

$$\begin{cases} \partial_t v - \Delta v = v(1-v), & x \in \mathbb{R}, y \neq 0, t > 0, \\ [v] = 0, [v_y] = -2av_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\ v(x, y, 0) = v_0(x, y), & (x, y) \in \mathbb{R}^2. \end{cases}$$

- This model was derived by Li and Wang⁵.
- The spreading speed and shape was studied by Chen, He and Wang⁶.

6. X. Chen, J. He and X. Wang, ARMA, 2023

Xingri Geng (NUS)

^{5.} H. Li and X. Wang, Nonlinearity, 2017

Theorem (Chen, He and Wang)

For each $\nu \in (0,1)$,

$$\lim_{t \to \infty} \|v(\cdot, t)\|_{L^{\infty}(\Omega^{c}(t))} = 0, \quad \lim_{t \to \infty} \|v(\cdot, t) - 1\|_{L^{\infty}(\Omega(\nu t))} = 0,$$

where $\Omega^{c}(t) = \mathbb{R}^{2} \setminus \Omega(t)$ and $\Omega(t) = t\Omega(1) := \{(tx, ty) | (x, y) \in \Omega(1)\}.$ Moreover,

$$\Omega(1) = \{(x,y) | \varphi^*(x,y,1) < 1\}$$

and

$$\varphi^*(x, y, t) := \min_{s \ge 0} \Big\{ \frac{x^2}{4(t+as)} + \frac{(|y|+s)^2}{4t} \Big\}.$$

米田区 米田区

3

EBCs for the System Effect of EBCs

Figure – Asymptotic Spreading Shape $\Omega(1)$

Xingri Geng (NUS)

Effective boundary conditions

50/57
EBCs for the System

- $R_a(\theta)$: the asymptotic propagation speed along angle θ ;
- $\theta_0 = \arcsin \frac{2a}{1+\sqrt{1+4a^2}}.$
- $\Omega(1)$ is called the **asymptotic expansion shape** :

$$\lim_{t \to \infty} v(xt, yt, t) = \begin{cases} 0, & (x, y) \in \Omega^c(1), \\ 1, & (x, y) \in \Omega(1). \end{cases}$$

EBCs for the System

Effect of EBCs

Theorem

^a There exist $\Sigma_1, \Sigma_2 \subset \mathbb{R}^2$ such that (i) $\Sigma_1 \subset \Omega_{a_1}(1) \subset \Sigma_2$; (ii) For each small $\nu > 0$, the following spreading results hold :

$$\begin{cases} \lim_{t \to \infty} \sup_{\Sigma_{2}^{c}((1+\nu)t)} (|v_{1}| + |v_{2}|) = 0, \\ \lim_{t \to \infty} \sup_{\Sigma_{2}((1-\nu)t) \setminus \Sigma_{1}((1+\nu)t)} (|v_{1}| + |v_{2} - 1|) = 0, \\ \lim_{t \to \infty} \sup_{\Sigma_{1}((1-\nu)t)} (|v_{1} - k_{1}| + |v_{2} - k_{2}|) = 0, \end{cases}$$

where
$$(k_1, k_2) = \left(\frac{1-b_1}{1-b_1b_2}, \frac{1-b_2}{1-b_1b_2}\right), \Sigma_1 = (1-b_1)\Omega_{a_1}(1), \Sigma_2 = \Omega_{a_2}(\sqrt{dr}).$$

a. X. Geng and H. Huang, preprint, 2023

Xingri Geng (NUS)

프 🖌 🔺 프

1 Introduction

- 2 EBCs for the Heat Equation
- 3 EBCs for the Fisher-KPP Equation
- 4 EBCs for the System

< ∃⇒

Future Works

• EBCs involving the fractional Laplacian of any order. Suppose

$$A(x)\mathbf{n}(p) = \sigma d(x)^a \mathbf{n}(p), \ A(x)\mathbf{s}(p) = \mu d(x)^a \mathbf{s}(p),$$

where a is a constant; d(x) is the distance of x onto $\partial\Omega$; p is the unique projection of x on $\partial\Omega$, and $\mathbf{s}(p)$ is an arbitrary tangent vector at p on $\partial\Omega$. Then A(x) is degenerate at the boundary $\partial\Omega$.

Figure – $\Omega = \Omega_1 \cup \overline{\Omega}_{\delta}$. Ω is fixed.

Xingri Geng (NUS)

- Apply the idea of EBCs to the wave equation and the Schrödinger equation, which can provide a physical understanding of the effects of the layer.
- Study the propagation speed for the Fisher-KPP equation on the upper half plane with the boundary condition involving fractional Laplacian of any order.
- Consider the propagation speed for the Fisher-KPP equation on the whole plane with multiple roads, on which a Wentzell-type boundary condition is imposed to enhance the speed.

Image: A matrix and a matrix

Publications

- X. Geng, Effective boundary conditions arising from the heat equation with three-dimensional interior inclusion, Comm. Pure Appl. Anal., **22** (2023), 1394-1419.
- X. Geng, Effective boundary conditions for heat equation arising from anisotropic and optimally aligned coatings in three dimensions, arXiv preprint arXiv :2301.13657, (2023).
- X. Geng, Effective boundary conditions for the Fisher-KPP equation on a domain with 3-dimensional optimally aligned coatings, arXiv preprint arXiv :2307.10429, (2023).
- X. Geng and Y. Wang, Fractional Laplacian boundary condition as a singular limit of problems degenerating at the boundary, in preparation.
- X. Geng and H. Huang, Asymptotic spreading of competition diffusion systems with an effective boundary condition on a road, in preparation.

(신문) (신문)

THANK YOU!

Xingri Geng (NUS)

Effective boundary conditions

57/57

米御 とくほと 米ほと 一日