
Effective Boundary Conditions for the Fisher-KPP
Equations

Xingri Geng

Main Supervisor: Professor Weizhu Bao
Co-supervisors: Associate Professor Linlin Su

Professor Xuefeng Wang

National University of Singapore
April 18, 2024

Xingri Geng (NUS) Effective boundary conditions
National University of Singapore April 18, 2024
1 / 57



OUTLINE

1 Introduction

2 EBCs for the Heat Equation

3 EBCs for the Fisher-KPP Equation

4 EBCs for the System

5 Future Works

Xingri Geng (NUS) Effective boundary conditions
National University of Singapore April 18, 2024
2 / 57



1 Introduction

2 EBCs for the Heat Equation

3 EBCs for the Fisher-KPP Equation

4 EBCs for the System

5 Future Works

Xingri Geng (NUS) Effective boundary conditions
National University of Singapore April 18, 2024
3 / 57



Introduction
Motivations

Figure – Turbine Engine Blades (from A. Aabid, S.A. Khan, 2008).
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Introduction
Motivations

Figure – Nature Reserve
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Introduction
Motivations

Figure – Cells (from A. Briegel et al., 2009).
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Introduction
Common Features

Domain contains a thin component :

thermal barrier coatings for blades ;
a road for nature reserve ;
membrane for cells.

Diffusion tensor on different components is drastically different :

in coating model, diffusion tensor is small ;
in nature reserve model, diffusion rate is large ;
in cell model, diffusion rate in membrane is small.
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Introduction

Issues :

The multi-scale in size and different diffusion tensors lead to
computational difficulty ;

It is hard to see the effect of the thin component ;

Resolution :

Think of the thin component as widthless surface and impose
"effective boundary conditions"(EBCs).
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EBCs for the heat equation
Geometry of Domain

Figure – Ω = Ω1 ∪ Ωδ ⊂ Rn. ∂Ω → ∂Ω1 as δ → 0.

Ωδ : uniformly thick with thickness δ.
Ω1 : fixed with ∂Ω1(= Γ) ∈ C2.
Use curvilinear coordinates (s, r) in Ωδ :

x = p(s) + rn(s), ∀x ∈ Ωδ,

p−the projection of x onto ∂Ω1, n−unit outer normal vector of Ω1,
r− distance from x to ∂Ω1, s = (s1, ..., sn−1)− local coordinates.
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EBCs for the Heat Equation
Full Model

For any fixed T > 0, u := u(x, t) satisfies
ut −∇ · (A(x)∇u) = f(x, t), x ∈ Ω, t ∈ (0, T ),
u = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω.

u0 ∈ L2(Ω), f ∈ L2(Ω× (0, T )) ;
Transmission conditions on ∂Ω1 × (0, T ) :

u1 = uδ, k
∂u1
∂n

= A(x)∇uδ · n,

u1, uδ− the restrictions of u on Ω1 × (0, T ) and Ωδ × (0, T ) ;
Goal : given some assumptions on the diffusion tensor A(x), u→ some
v as δ → 0 with some EBCs satisfied.
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History

In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

In 1974, Sanchez-Palencia studied elliptic and heat equations with
thin diamond-shaped inclusions ;

In 1980, Brezis, Caffarelli and Friedman studied the elliptic
problem in both interior and boundary reinforcement cases ;

Lots of work on elastic equations, electromagnetic equations,
nonlinear diffusion equations, etc.

Among these work, the diffusion tensor A(x) is isotropic in the
layer.
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History

In 2006, Wang and his collaborators considered optimally aligned
coatings ;

In 2012, Chen, Pond and Wang studied the optimally aligned
coating in 2-dimensional case to derive new EBCs ;

In 2017, Li and Wang used the idea of EBCs to derive the model
about the effect of fast diffusion on the road, which is different
from Berestycki’s model ;

In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model
by using the ideal of EBCs ;

In 2023, Chen, He and Wang studied the effect of EBCs on the
propagation speed of the Fisher-KPP equation.
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EBCs for the Heat Equation
Assumptions on A(x)

In our case, let n = 3, and

A(x) =

{
kI3×3, x ∈ Ω1,
(aij(x))3×3, x ∈ Ωδ.

k > 0 constant, (aij)3×3 : anisotropic and positive-definite.
Ωδ is “optimally aligned” 1 : for any x ∈ Ωδ, the normal vector n(p)
is always an eigenvector of A(x).
A(x) satisfies :

A(x)n(p) = σn(p), A(x)τττ1(p) = µ1τττ1(p), A(x)τττ2(p) = µ2τττ2(p),

τττ1, τττ2− two eigenvectors of A(x) ;
σ− “normal diffusion rate" ;
µ1, µ2− “tangential diffusion rate".

1. S. Rosencrans and X. Wang, SIAM J. Appl. Math, 2006
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EBCs for the Heat Equation
Two assumptions of A(x)

Case 1. µ1 = µ2.
Assume A(x) satisfies

A(x)n(p) = σn(p), A(x)s(p) = µs(p), ∀x ∈ Ωδ,

where (σ, µ) = (σ(δ), µ(δ)) ; n(p)− unit outer normal vector of Ω1,
s(p)− arbitrary tangent vector at p on ∂Ω1.

Case 2. µ1 ̸= µ2.
Assume ∂Ω1 = T2, and A(x) satisfies

A(x)n(p) = σn(p),
A(x)τττ1(p) = µ1τττ1(p),

A(x)τττ2(p) = µ2τττ2(p).
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EBCs for the Heat Equation
Weak solution

Denote QT := Ω× (0, T ) and ST := ∂Ω× (0, T ).

W 1,0
2 (QT ) =

{
u ∈ L2(QT )

∣∣∣∇u ∈ L2(QT )
}

and W 1,0
2,0 (QT ) is the

closure of C∞ functions vanishing near ST in W 1,0
2 (QT )-norm.

V 1,0
2,0 (QT ) =W 1,0

2,0 (QT ) ∩ C
(
[0, T ];L2(Ω)

)
.

Definition
u is a weak solution of the heat equation, if u ∈ V 1,0

2,0 (QT ) and

A[u, ξ] =−
∫
Ω
u0(x)ξ(x, 0)dx+

∫
QT

(A(x)∇u) · ∇ξ − uξt − fξdtdx

=0

for any ξ ∈W 1,1
2,0 (QT ) satisfying ξ = 0 at t = T .
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EBCs for the Heat Equation
Case 1 : µ1 = µ2

(Recall A(x)n(p) = σn(p), A(x)s(p) = µs(p), ∀x ∈ Ωδ.)

Theorem
a Let

lim
δ→0

σ

δ
= α ∈ [0,∞] and lim

δ→0
σµ = γ ∈ [0,∞].

As δ → 0, u→ v in C([0, T ];L2(Ω)), where v := v(x, t) is the unique
solution of the effective problem{

vt − k∆v = f(x, t), x ∈ Ω1, t ∈ (0, T ),
v(x, 0) = u0(x), x ∈ Ω1,

with the EBCs listed in the table below :

a. X. Geng, preprint, 2023
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EBCs for the Heat Equation
Case 1 : µ1 = µ2

n− unit outer normal vector of Γ.
∇Γ− the surface gradient operator.

J γ/α
D − a Dirichlet-to-Neumann mapping.
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EBCs for the Heat Equation
Case 1 : µ1 = µ2

Given a smooth function g(s) and H ∈ (0,∞), define

JH
D [g] := ΨR(s, 0),

where Ψ := Ψ(s,R) is the unique solution of{
ΨRR +∆ΓΨ = 0, Γ× (0, H),
Ψ(s, 0) = g(s), Ψ(s,H) = 0.

Moreover,

JH
D [g](s) = −

∞∑
n=1

√
λnen(s)gn

tanh(
√
λnH)

,J∞
D = lim

H→∞
JH
D = −(−∆Γ)

1/2.

λn, en(s)− the eigenvalues and the corresponding eigenfunctions of the
Laplacian-Beltrami −∆Γ, and gn := ⟨en, g⟩.
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EBCs for the Heat Equation
Proof of the theorem

Outline of the proof :
Step 1. Existence and uniqueness of the solution of heat equation.
Step 2. Energy estimates for the solution of heat equation and then
apply the Arzela-Ascoli theorem to show that after passing to a
subsequence of δ, u→ v.
Step 3. Such v is a weak solution of the effective problem.
Step 4. Uniqueness of the solution of the effective problem to
ensure the convergence without passing to a subsequence..
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EBCs for the Heat Equation
Proof of the theorem

Step 3. For given ξ that is the test function of heat equation,
ξ ∈ C∞(Ω1 × (0, T )).

Take a new test function 2

ξ(x, t) =

{
ξ(x, t), Ω1,

ψ(x, t), Ωδ,

where ψ := ψ(s, r, t) is the unique solution of{
σψrr + µ∆Γψ = 0, Γ× (0, δ),
ψ(s, 0, t) = ξ(s, 0, t) ψ(s, δ, t) = 0.

2. X. Chen, C. Pond, and X. Wang, ARMA, 2012
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EBCs for the heat equation
Proof of the theorem

By the weak solution of heat equation, it holds∫ T

0

∫
Ω1

k∇ξ · ∇udxdt−
∫
Ω
u0(x)ξ(x, 0)dx−

∫ T

0

∫
Ω
(uξt + fξ)dxdt

= −
∫ T

0

∫
Ωδ

∇ψ ·A(x)∇udxdt.

EBCs arise on the right-hand side.

Remark :

If the layer is of interior inclusion, EBCs are also derived 3.

3. X. Geng, CPAA, 2023
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EBCs for the heat equation
Case 2 : µ1 ̸= µ2

(Recall A(x)n(p) = σn(p), A(x)τττ1(p) = µ1τττ1(p), A(x)τττ2(p) = µ2τττ2(p).)

Theorem
a Suppose Γ = T2 = Γ1 × Γ2 and µ1 > µ2.
Let

lim
δ→0

µ2
µ1

= c ∈ [0, 1], lim
δ→0

σ

δ
= α ∈ [0, 1],

lim
δ→0

σµi = γi ∈ [0,∞], lim
δ→0

µiδ = βi ∈ [0,∞], i = 1, 2.

a. X. Geng, preprint, 2023
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EBCs for the Heat Equation
Case 2 : µ1 ̸= µ2

Theorem
(i) If c ∈ (0, 1], then as δ → 0, u→ v in C([0, T ];L2(Ω1)), where
v := v(x, t) is the solution of the effective problem with the EBCs listed
in the following table :
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EBCs for the Heat Equation
Case 2 : µ1 ̸= µ2

Theorem
(ii) If c = 0, lim

δ→0
δ2µ1/µ2 = 0, then u→ v in C([0, T ];L2(Ω1)), where v

is the solution of the effective problem with the EBCs listed in the table :
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EBCs for the Heat Equation
Case 2 : µ1 ̸= µ2

If σ
δ → ∞ as δ → 0, then the tangential diffusion rate has no

influence (i.e. the EBC is always v = 0).
If σµ1 → γ1 ∈ [0,∞), then µ2 has no influence on EBCs.
Similarly, for smooth g and for H ∈ (0,∞), define

KH
D [g](s) := ΦR(s, 0),

where Φ is the unique bounded solution of{
ΦRR +Φs1s1 + cΦs2s2 = 0, Γ× (0, H),
Φ(s, 0) = g(s), Φ(s,H) = 0.
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EBCs for the Heat Equation
Case 2 : µ1 ̸= µ2

ΛH
D [g](s) := Φ0

R(s, 0), where Φ0 is the unique bounded solution of{
Φ0
RR +Φ0

s1s1 = 0, Γ× (0, H),
Φ0(s, 0) = g(s), Φ0(s,H) = 0.

DH
D [g](s2) := ΦR(s2, 0), where Φ is the unique bounded solution of{

ΦRR +Φs2s2 = 0, Γ2 × (0, H),
Φ(s2, 0) = g(s2), Φ(s2, H) = 0.
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EBCs for the Heat Equation
The proof of the theorem

The proof is similar to that in Case 1.
Step 3. Construct an auxiliary function ϕ by defining{

σϕrr + µ1ϕs1s1 + µ2ϕs2s2 = 0, Γ× (0, δ),
ϕ(s, 0, t) = ξ(s, 0, t), ϕ(s, δ, t) = 0.

Let r = R
√
σ/µ1 and suppress the time dependence, leading to{
Φδ
RR +Φδ

s1s1 +
µ2

µ1
Φδ
s2s2 = 0, Γ× (0, h1),

Φδ(s, 0) = ξ(s, 0, t), Φδ(s, h1) = 0,

where h1 = δ
√
σ/µ1 and Φδ(s,R) := ϕ(s,R

√
σ/µ1, t).
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σϕrr + µ1ϕs1s1 + µ2ϕs2s2 = 0, Γ× (0, δ),
ϕ(s, 0, t) = ξ(s, 0, t), ϕ(s, δ, t) = 0.

Let r = R
√
σ/µ1 and suppress the time dependence, leading to{
Φδ
RR +Φδ

s1s1 +
µ2

µ1
Φδ
s2s2 = 0, Γ× (0, h1),

Φδ(s, 0) = ξ(s, 0, t), Φδ(s, h1) = 0,

where h1 = δ
√
σ/µ1 and Φδ(s,R) := ϕ(s,R

√
σ/µ1, t).
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EBCs for the Heat Equation
Error Estimates

(Recall A(x)n(p) = σn(p), A(x)s(p) = µs(p), ∀x ∈ Ωδ.)

Theorem
Let σµ→ 0 and σ

δ → α ∈ [0,∞) as δ → 0. Thus, the EBC is

∂v

∂n
+ αv = 0.

Under some assumptions on ∂Ω1, u0, f , the following holds.
(i) If α ∈ (0,∞), then

||u(·, t)− v(·, t)||2L2(Ω1)
≤ C

(∣∣∣σ
δ
− α

∣∣∣+√
δ +

√
σµ

)
.

(ii) If α = 0, then

||u(·, t)− v(·, t)||2L2(Ω1)
≤ C

(√
σµtet +

√
δtet +

σtet

δ

)
.
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EBCs for the Heat Equation
Error Estimates

Figure – An illustration of ||u(·, t)− v(·, t)||L2(Ω1) as t→ ∞.

Question : what is the maximal interval that keeps u and v close ?
Answer : consider the steady state of u and v.
A typical example : the EBC is a Neumann condition.
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EBCs for the Fisher-KPP Equation
Full Model

(Recall A(x)n(p) = σn(p), A(x)s(p) = µs(p), ∀x ∈ Ωδ.)
For any fixed T > 0, u := u(x, t) satisfies

ut −∇ · (A(x)∇u) = f(u), x ∈ Ω, t ∈ (0, T ),
u = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω.

0 ≤ u0 ∈ L∞(Ω), f(u) = u(1− u).
Transmission conditions :

u1 = uδ, k
∂u1
∂n

= A(x)∇uδ · n.

u1, uδ− the restrictions of u on Ω1 × (0, T ) and Ωδ × (0, T ).
The derivation of EBCs is similar to that in the heat equation
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EBCs for the Fisher-KPP Equation
Maximal Interval

Theorem
As δ → 0, u satisfies

max
0≤t≤∞

||u(·, t)− v(·, t)||L2(Ω1) → 0,

where v is the solution of the effective problem with any EBC as follows.
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EBCs for the Fisher-KPP Equation
The proof of the theorem

The idea is to consider the steady state of u and v.
Consider {

−∇ · (A(x)∇U) = U(1− U), x ∈ Ω,
U = 0, x ∈ ∂Ω,

where U := U(x) is the unique positive solution.

V := V (x) is the unique positive solution of

−k∆V = V (1− V ), x ∈ Ω1,

with the EBCs listed in the above table (with v replaced by V ).
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EBCs for the Fisher-KPP equation
The proof of the theorem

Outline of the proof :

||u(·, t)− U ||L2(Ω) is decreasing in t.

For any t ≥ Tε,

||u(·, t)− U ||L2(Ω1)

≤ ||u(·, t)− U ||L2(Ω)

≤ ||u(·, Tε)− v(·, Tε)||L2(Ω1) + ||v(·, Tε)− V ||L2(Ω1)

+ ||U − V ||L2(Ω1) + ||u(·, Tε)− U ||L2(Ω2)

≤ Cε.
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EBCs for the Fisher-KPP equation
Outline of the proof

Finally, for a small δ > 0,

max
t∈[Tε,∞]

||u(·, t)− v(·, t)||L2(Ω1)

≤ max
t∈[Tε,∞]

||u(·, t)− U ||L2(Ω1) + max
t∈[Tε,∞]

||v(·, t)− V ||L2(Ω1)

+ ||U − V ||L2(Ω1)

≤ ||u(·, Tε)− U ||L2(Ω1) + max
t∈[Tε,∞]

||v(·, t)− V ||L2(Ω1) + ||U − V ||L2(Ω1)

≤ Cε.
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EBCs for the System
Geometry of Domain

Denote R2
− := {(x, y) : x ∈ R, y < 0} and Γ1 := {(x, y) : x ∈ R, y = 0}.

Figure – Ωδ ⊂ R2 is uniformly thick with thickness δ. Γ2 → Γ1 as δ → 0.
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EBCs for the System
Full Model

Consider the coupled Fisher-KPP equations (the Lotka-Volterra
competition diffusion system) in R2

∂tu1 −∇ · (D1(x, y)∇u1) = f1(u1, u2), (x, y) ∈ R2, t > 0,
∂tu2 −∇ · (D2(x, y)∇u2) = f2(u1, u2), (x, y) ∈ R2, t > 0,
(u1, u2)(x, y, 0) = (u1,0, u2,0)(x, y), (x, y) ∈ R2,

where
u1 := u1(x, y, t), u2 := u2(x, y, t),

f1(u1, u2) = r1u1(1− u1 − b1u2), f2(u1, u2) = r2u2(1− u2 − b2u1),
b1, b2 ∈ (0, 1), the initial value uk,0(k = 1, 2) satisfying{

0 ≤ uk,0 ≤ 1, uk,0 ̸≡ 0,
uk,0 are C∞− smooth, and compactly supported.
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EBCs for the System
Assumptions on Dk(x, y)

Let

Dk(x, y) =

{
akij(x, y), if y ∈ (0, δ),
dk, otherwise.

dk > 0 are constants, akij(x, y) is positive-definite and satisfies the
optimally aligned condition in the road :

Dk(x, y)n(x) = σkn(x), Dk(x, y)s(x) = µks(x), ∀y ∈ (0, δ),

where n(x) = (0, 1), s(x) = (1, 0).
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EBCs for the System
Existence and uniqueness

Motivated by the work of Li and Wang 4, we have the existence and
uniqueness of the system.

Theorem
For any fixed T > 0, the system admits a unique bounded solution

uk ∈ V 1,1
2 (R2 × (0, T )), k = 1, 2.

Moreover, 0 ≤ uk ≤M for some M independent of δ, and

uk ∈ C∞
loc

(
Ωδ × (0, T )

)
∩ C∞

loc

(
Rδ × (0, T )

)
∩ C∞

loc

(
Ω− × (0, T )

)
.

4. H. Li and X. Wang, Nonlinearity, 2017
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EBCs for the system
Derivation of EBCs

Theorem
For any fixed T > 0, and k = 1, 2, let

lim
δ→0

σkµk = γk ∈ [0,∞], lim
δ→0

σk
δ

= αk ∈ [0,∞], lim
δ→0

µkδ = βk ∈ [0,∞].

Then (u1, u2) → (v1, v2) in C
(
[0, T ], L2

loc(R2)
)
× C

(
[0, T ], L2

loc(R2)
)

as
δ → 0, where (v1, v2) is the solution of the effective system

∂tv1 − d1∆u1 = r1v1(1− v1 − b1v2), x ∈ R, y ̸= 0, t > 0,
∂tv2 − d2∆v2 = r2v2(1− v2 − b2v1), x ∈ R, y ̸= 0, t > 0,
(v1, v2)(x, y, 0) = (u1,0, u2,0)(x, y), (x, y) ∈ R2,

with the EBCs listed below.
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EBCs for the System
Derivation of EBCs

The dash lines mean such cases do not exist.
v−k and v+k : the restrictions of vk on R2

− × (0, T ) and R2
+ × (0, T ).
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EBCs for the System
Derivation of EBCs
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EBCs for the System
Derivation of EBCs

The condition σkδ3 → 0 can be removed if µk
σk

↛ 0.

Xingri Geng (NUS) Effective boundary conditions
National University of Singapore April 18, 2024
45 / 57



EBCs for the System
Derivation of EBCs

J β/γ
1 ,J β/γ

2 − the Dirichlet-to-Neumann mapping.
For H ∈ (0,∞) and smooth g on R, define

JH
1 [g] := ΨY (x, 0) and JH

2 [g] := ΨY (x,H),

where Ψ is the unique solution of{
ΨY Y +Ψxx = 0, R× (0, H),
Ψ(x, 0) = g(x), Ψ(x,H) = 0.

Moreover,

J∞
1 [g] = lim

H→∞
JH
1 [g] := − (−∂xx)1/2 g, J∞

2 [g] = lim
H→∞

JH
2 [g] = 0,

where (−∂xx)1/2 g is the fractional Laplacian of order 1/2.
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EBCs for the System
Effect of EBCs

Consider the Lotka-Volterra competition diffusion system :
∂tv1 −∆v1 = v1(1− v1 − b1v2), x ∈ R, y ̸= 0, t > 0,
∂tv2 − d∆v2 = rv2(1− v2 − b2v1), x ∈ R, y ̸= 0, t > 0,
[v1] = 0, [(v1)y] = −2a1(v1)xx, x ∈ R, y = 0, t > 0,
[v2] = 0, [d(v2)y] = −2a2(v2)xx, x ∈ R, y = 0, t > 0,
(v1, v2)(x, y, 0) = (v10, v20)(x, y), (x, y) ∈ R2,

where
[v1]

∣∣∣
y=0

:= v1(x, 0+, t)− v1(x, 0−, t) ;

dr > 1, b1, b2 ∈ (0, 1) and a1, a2 ∈ (0,∞) with a1 ≪ a2 ;
the initial value (v10, v20) satisfies

0 ≤ v10 ≤ 1, v10 ̸≡ 0,
0 ≤ v20 ≤ 1, v20 ̸≡ 0,
v10, v20 are compactly supported.
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EBCs for the System
Effect of EBCs

If no competition effect, the Fisher-KPP equation with a Wenztel-type
boundary condition (can seen as an EBC) reads as

∂tv −∆v = v(1− v), x ∈ R, y ̸= 0, t > 0,
[v] = 0, [vy] = −2avxx, x ∈ R, y = 0, t > 0,
v(x, y, 0) = v0(x, y), (x, y) ∈ R2.

This model was derived by Li and Wang 5.

The spreading speed and shape was studied by Chen, He and
Wang 6.

5. H. Li and X. Wang, Nonlinearity, 2017
6. X. Chen, J. He and X. Wang, ARMA, 2023
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EBCs for the System
Effect of EBCs

Theorem (Chen, He and Wang)
For each ν ∈ (0, 1),

lim
t→∞

∥v(·, t)∥L∞(Ωc(t)) = 0, lim
t→∞

∥v(·, t)− 1∥L∞(Ω(νt)) = 0,

where Ωc(t) = R2\Ω(t) and Ω(t) = tΩ(1) := {(tx, ty)|(x, y) ∈ Ω(1)}.
Moreover,

Ω(1) = {(x, y)|φ∗(x, y, 1) < 1}

and

φ∗(x, y, t) := min
s≥0

{ x2

4(t+ as)
+

(|y|+ s)2

4t

}
.
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EBCs for the System
Effect of EBCs

Figure – Asymptotic Spreading Shape Ω(1)
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EBCs for the System
Effect of EBCs

Ra(θ) : the asymptotic propagation speed along angle θ ;
θ0 = arcsin 2a

1+
√
1+4a2

.

Ω(1) is called the asymptotic expansion shape :

lim
t→∞

v(xt, yt, t) =

{
0, (x, y) ∈ Ωc(1),

1, (x, y) ∈ Ω(1).
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EBCs for the System
Effect of EBCs

Theorem
a There exist Σ1,Σ2 ⊂ R2 such that
(i) Σ1 ⊂ Ωa1(1) ⊂ Σ2 ;
(ii) For each small ν > 0, the following spreading results hold :

lim
t→∞

sup
Σc

2((1+ν)t)
(|v1|+ |v2|) = 0,

lim
t→∞

sup
Σ2((1−ν)t)\Σ1((1+ν)t)

(|v1|+ |v2 − 1|) = 0,

lim
t→∞

sup
Σ1((1−ν)t)

(|v1 − k1|+ |v2 − k2|) = 0,

where (k1, k2) =
(

1−b1
1−b1b2

, 1−b2
1−b1b2

)
, Σ1 = (1− b1)Ωa1(1), Σ2 = Ωa2(

√
dr).

a. X. Geng and H. Huang, preprint, 2023
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Future Works

EBCs involving the fractional Laplacian of any order. Suppose

A(x)n(p) = σd(x)an(p), A(x)s(p) = µd(x)as(p),

where a is a constant ; d(x) is the distance of x onto ∂Ω ; p is the
unique projection of x on ∂Ω, and s(p) is an arbitrary tangent
vector at p on ∂Ω. Then A(x) is degenerate at the boundary ∂Ω.

Figure – Ω = Ω1 ∪ Ωδ. Ω is fixed.
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Future Works

Apply the idea of EBCs to the wave equation and the Schrödinger
equation, which can provide a physical understanding of the effects
of the layer.
Study the propagation speed for the Fisher-KPP equation on the
upper half plane with the boundary condition involving fractional
Laplacian of any order.
Consider the propagation speed for the Fisher-KPP equation on
the whole plane with multiple roads, on which a Wentzell-type
boundary condition is imposed to enhance the speed.
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Publications

1 X. Geng, Effective boundary conditions arising from the heat
equation with three-dimensional interior inclusion, Comm. Pure
Appl. Anal., 22 (2023), 1394-1419.

2 X. Geng, Effective boundary conditions for heat equation arising
from anisotropic and optimally aligned coatings in three
dimensions, arXiv preprint arXiv :2301.13657, (2023).

3 X. Geng, Effective boundary conditions for the Fisher-KPP
equation on a domain with 3-dimensional optimally aligned
coatings, arXiv preprint arXiv :2307.10429, (2023).

4 X. Geng and Y. Wang, Fractional Laplacian boundary condition as
a singular limit of problems degenerating at the boundary, in
preparation.

5 X. Geng and H. Huang, Asymptotic spreading of competition
diffusion systems with an effective boundary condition on a road, in
preparation.
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THANK YOU !

Xingri Geng (NUS) Effective boundary conditions
National University of Singapore April 18, 2024
57 / 57


	Introduction
	EBCs for the Heat Equation
	EBCs for the Fisher-KPP Equation
	EBCs for the System
	Future Works

