Effective Boundary Conditions for the Fisher-KPP Equations

Xingri Geng

Main Supervisor: Professor Weizhu Bao Co-supervisors: Associate Professor Linlin Su Professor Xuefeng Wang

National University of Singapore April 18, 2024

OUTLINE

[Introduction](#page-2-0)

- 2 [EBCs for the Heat Equation](#page-10-0)
- 3 [EBCs for the Fisher-KPP Equation](#page-52-0)
- 4 [EBCs for the System](#page-58-0)

5 [Future Works](#page-74-0)

n[at](#page-0-0)[ion](#page-1-0)[al](#page-2-0) [Un](#page-0-0)[i](#page-1-0)[ve](#page-2-0)[rsit](#page-0-0)[y](#page-1-0) [o](#page-2-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

 $2/57$

- [EBCs for the Heat Equation](#page-10-0)
- [EBCs for the Fisher-KPP Equation](#page-52-0)
- [EBCs for the System](#page-58-0)
- [Future Works](#page-74-0)

Introduction

Motivations

Figure – Turbine Engine Blades (from A. Aabid, S.A. Khan, 2008).

Motivations

Nature Reserve (diffusion rate: small)

Road (diffusion rate: large)

Nature Reserve (diffusion rate: small)

Figure – Nature Reserve

Introduction

Motivations

Figure – Cells (from A. Briegel et al., 2009).

- • Domain contains a thin component :
	- thermal barrier coatings for blades;
	- a road for nature reserve;
	- membrane for cells.

Diffusion tensor on different components is drastically different :

- in coating model, diffusion tensor is small;
- in nature reserve model, diffusion rate is large;
- in cell model, diffusion rate in membrane is small.

- • Domain contains a thin component :
	- thermal barrier coatings for blades;
	- a road for nature reserve ;
	- membrane for cells.

Diffusion tensor on different components is drastically different :

- in coating model, diffusion tensor is small;
- in nature reserve model, diffusion rate is large;
- in cell model, diffusion rate in membrane is small.

Issues :

- The multi-scale in size and different diffusion tensors lead to computational difficulty ;
- It is hard to see the effect of the thin component ;

\bullet

Think of the thin component as widthless surface and impose

Issues :

- The multi-scale in size and different diffusion tensors lead to computational difficulty ;
- It is hard to see the effect of the thin component;
- Resolution :
	- Think of the thin component as widthless surface and impose "effective boundary conditions"(EBCs).

[EBCs for the Fisher-KPP Equation](#page-52-0)

[EBCs for the System](#page-58-0)

[Future Works](#page-74-0)

EBCs for the heat equation

Geometry of Domain

Figure – $\Omega = \Omega_1 \cup \overline{\Omega}_{\delta} \subset \mathbb{R}^n$. $\partial \Omega \to \partial \Omega_1$ as $\delta \to 0$.

- \bullet Ω_{δ} : uniformly thick with thickness δ .
- Ω_1 : fixed with $\partial \Omega_1(=\Gamma) \in C^2$.
- Use curvilinear coordinates (s, r) in Ω_{δ} :

$$
x = p(s) + r\mathbf{n}(s), \quad \forall x \in \Omega_{\delta},
$$

p−the projection of x onto $\partial\Omega_1$, n−unit outer normal vector of Ω_1 , $r-$ dista[n](#page-10-0)ce from x to $\partial\Omega_1$ $\partial\Omega_1$ $\partial\Omega_1$, $s = (s_1, ..., s_{n-1}) - \text{local coordinates.}$ $s = (s_1, ..., s_{n-1}) - \text{local coordinates.}$ $s = (s_1, ..., s_{n-1}) - \text{local coordinates.}$

EBCs for the Heat Equation Full Model

For any fixed $T > 0$, $u := u(x, t)$ satisfies

$$
\begin{cases}\n u_t - \nabla \cdot (A(x)\nabla u) = f(x,t), & x \in \Omega, t \in (0,T), \\
 u = 0, & x \in \partial\Omega, t \in (0,T), \\
 u(x,0) = u_0(x), & x \in \Omega.\n\end{cases}
$$

$$
\bullet \, u_0 \in L^2(\Omega), \, f \in L^2(\Omega \times (0,T)) \, ;
$$

• Transmission conditions on $\partial\Omega_1 \times (0,T)$:

$$
u_1 = u_\delta, \ k \frac{\partial u_1}{\partial \mathbf{n}} = A(x) \nabla u_\delta \cdot \mathbf{n},
$$

 u_1, u_δ the restrictions of u on $\Omega_1 \times (0,T)$ and $\Omega_\delta \times (0,T)$; Goal : given some assumptions on the diffusion tensor $A(x)$, $u \to$ some v as $\delta \rightarrow 0$ with some EBCs satisfied.

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book Conduction of Heat in Solids ;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions ;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases ;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor $A(x)$ is isotropic in the

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book Conduction of Heat in Solids ;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions ;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases ;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor $A(x)$ is isotropic in the

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book Conduction of Heat in Solids ;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions ;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases ;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor $A(x)$ is isotropic in the

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book Conduction of Heat in Solids ;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions ;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases ;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor $A(x)$ is isotropic in the

- In 1959, Carlaw and Jaeger derived EBCs in some simple cases in their classic book Conduction of Heat in Solids ;
- In 1974, Sanchez-Palencia studied elliptic and heat equations with thin diamond-shaped inclusions ;
- In 1980, Brezis, Caffarelli and Friedman studied the elliptic problem in both interior and boundary reinforcement cases ;
- Lots of work on elastic equations, electromagnetic equations, nonlinear diffusion equations, etc.
- Among these work, the diffusion tensor $A(x)$ is isotropic in the layer.

- • In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs ;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model ;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs ;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

- • In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs ;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model ;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs ;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

- • In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs ;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model ;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs ;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

- • In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs ;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model ;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs ;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

- • In 2006, Wang and his collaborators considered optimally aligned coatings;
- In 2012, Chen, Pond and Wang studied the optimally aligned coating in 2-dimensional case to derive new EBCs ;
- In 2017, Li and Wang used the idea of EBCs to derive the model about the effect of fast diffusion on the road, which is different from Berestycki's model ;
- In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model by using the ideal of EBCs ;
- In 2023, Chen, He and Wang studied the effect of EBCs on the propagation speed of the Fisher-KPP equation.

EBCs for the Heat Equation Assumptions on $A(x)$

In our case, let $n = 3$, and

$$
A(x) = \begin{cases} kI_{3\times 3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times 3}, & x \in \Omega_\delta. \end{cases}
$$

- $k > 0$ constant, $(a_{ij})_{3\times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned" ¹: for any $x \in \Omega_{\delta}$, the normal vector $\mathbf{n}(p)$ is always an eigenvector of $A(x)$.
- \bullet $A(x)$ satisfies :

 $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\tau_1(p) = \mu_1 \tau_1(p), A(x)\tau_2(p) = \mu_2 \tau_2(p),$

- τ_1 , τ_2 two eigenvectors of $A(x)$;
- \bullet σ "normal diffusion rate" ;
- μ_1, μ_2 "tangential diffusion rate".

1. S. Rose[n](#page-10-0)crans and X. Wang, SIAM J. Appl. Math, $2006 \cdot 5 \rightarrow 15 \rightarrow 15$ $2006 \cdot 5 \rightarrow 15 \rightarrow 15$

EBCs for the Heat Equation Assumptions on $A(x)$

In our case, let $n = 3$, and

$$
A(x) = \begin{cases} kI_{3\times 3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times 3}, & x \in \Omega_\delta. \end{cases}
$$

- $k > 0$ constant, $(a_{ij})_{3 \times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned" ¹: for any $x \in \Omega_{\delta}$, the normal vector **n**(p) is always an eigenvector of $A(x)$.

 \bullet $A(x)$ satisfies :

 $A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\tau_1(p) = \mu_1 \tau_1(p), A(x)\tau_2(p) = \mu_2 \tau_2(p),$

- τ_1 , τ_2 two eigenvectors of $A(x)$;
- σ− "normal diffusion rate" ;
- μ_1, μ_2 "tangential diffusion rate".

1. S. Rose[n](#page-10-0)crans and X. Wang, SIAM J. Appl. Math, $2006 \cdot 5 \rightarrow 405 \cdot 18$ $2006 \cdot 5 \rightarrow 405 \cdot 18$, $\rightarrow 200$ Xingri Geng (NUS) [Effective boundary conditions](#page-0-0) 14 / 57

EBCs for the Heat Equation Assumptions on $A(x)$

In our case, let $n = 3$, and

$$
A(x) = \begin{cases} kI_{3\times 3}, & x \in \Omega_1, \\ (a_{ij}(x))_{3\times 3}, & x \in \Omega_\delta. \end{cases}
$$

- $k > 0$ constant, $(a_{ij})_{3\times 3}$: anisotropic and positive-definite.
- Ω_{δ} is "optimally aligned" ¹: for any $x \in \Omega_{\delta}$, the normal vector **n**(p) is always an eigenvector of $A(x)$.
- \bullet $A(x)$ satisfies :

$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p),
$$

- τ_1 , τ_2 two eigenvectors of $A(x)$;
- $\sigma-$ "normal diffusion rate" ;
- μ_1, μ_2 "tangential diffusion rate".

1. S. Rosencrans and X. Wang, SIAM J. Appl. Math[, 2](#page-24-0)[006](#page-26-0) Xingri Geng (NUS) [Effective boundary conditions](#page-0-0) [Nat](#page-22-0)[io](#page-23-0)[n](#page-25-0)[al](#page-26-0) [U](#page-9-0)[n](#page-10-0)[i](#page-51-0)[ve](#page-52-0)[rs](#page-9-0)[it](#page-10-0)[y](#page-51-0) [o](#page-52-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024 14 / 57

EBCs for the Heat Equation Two assumptions of $A(x)$

• *Case 1.* $u_1 = u_2$. Assume $A(x)$ satisfies

$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), \quad A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \quad \forall x \in \Omega_{\delta},
$$

where $(\sigma, \mu) = (\sigma(\delta), \mu(\delta))$; $\mathbf{n}(p)$ unit outer normal vector of Ω_1 , $s(p)$ – arbitrary tangent vector at p on $\partial\Omega_1$.

• *Case 2.* $\mu_1 \neq \mu_2$. Assume $\partial\Omega_1 = \mathbb{T}^2$, and $A(x)$ satisfies

$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p),
$$

\n
$$
A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p),
$$

\n
$$
A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p).
$$

EBCs for the Heat Equation Two assumptions of $A(x)$

• *Case 1.* $u_1 = u_2$. Assume $A(x)$ satisfies

$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), \quad A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \quad \forall x \in \Omega_{\delta},
$$

where $(\sigma, \mu) = (\sigma(\delta), \mu(\delta))$; $\mathbf{n}(p)$ unit outer normal vector of Ω_1 , $s(p)$ – arbitrary tangent vector at p on $\partial\Omega_1$.

• *Case 2.* $\mu_1 \neq \mu_2$. Assume $\partial\Omega_1 = \mathbb{T}^2$, and $A(x)$ satisfies

$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p),
$$

\n
$$
A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p),
$$

\n
$$
A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p).
$$

EBCs for the Heat Equation Weak solution

Denote
$$
Q_T := \Omega \times (0, T)
$$
 and $S_T := \partial \Omega \times (0, T)$.
\n• $W_2^{1,0}(Q_T) = \{u \in L^2(Q_T) \Big| \nabla u \in L^2(Q_T)\}$ and $W_{2,0}^{1,0}(Q_T)$ is the closure of C^{∞} functions vanishing near \overline{S}_T in $W_2^{1,0}(Q_T)$ -norm.
\n• $V_{2,0}^{1,0}(Q_T) = W_{2,0}^{1,0}(Q_T) \cap C([0,T]; L^2(\Omega))$.

Definition

u is a weak solution of the heat equation, if $u \in V_{2,0}^{1,0}$ $_{2,0}^{71,0}(Q_T)$ and

$$
\mathcal{A}[u,\xi] = -\int_{\Omega} u_0(x)\xi(x,0)dx + \int_{Q_T} (A(x)\nabla u) \cdot \nabla \xi - u\xi_t - f\xi dt dx
$$

=0

for any $\xi \in W_{2,0}^{1,1}$ $2.0^{1,1}_{2,0}(Q_T)$ satisfying $\xi = 0$ at $t = T$.

 \leftarrow

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

(Recall
$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}.
$$
)

Theorem

^a Let

$$
\lim_{\delta \to 0} \frac{\sigma}{\delta} = \alpha \in [0, \infty] \text{ and } \lim_{\delta \to 0} \sigma \mu = \gamma \in [0, \infty].
$$

As $\delta \to 0$, $u \to v$ in $C([0,T]; L^2(\Omega))$, where $v := v(x,t)$ is the unique solution of the effective problem

$$
\begin{cases}\nv_t - k\Delta v = f(x, t), & x \in \Omega_1, t \in (0, T), \\
v(x, 0) = u_0(x), & x \in \Omega_1,\n\end{cases}
$$

with the EBCs listed in the table below :

a. X. Geng, preprint, 2023

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

- n− unit outer normal vector of Γ.
- \triangledown_{Γ} the surface gradient operator.
- $\mathcal{J}_D^{\gamma/\alpha}$ a Dirichlet-to-Neumann mapping.

EBCs for the Heat Equation Case 1 : $\mu_1 = \mu_2$

Given a smooth function $g(s)$ and $H \in (0, \infty)$, define

$$
\mathcal{J}_D^H[g] := \Psi_R(s,0),
$$

where $\Psi := \Psi(s, R)$ is the unique solution of

$$
\begin{cases} \Psi_{RR} + \Delta_{\Gamma} \Psi = 0, & \Gamma \times (0, H), \\ \Psi(s, 0) = g(s), & \Psi(s, H) = 0. \end{cases}
$$

Moreover,

$$
\mathcal{J}_D^H[g](s) = -\sum_{n=1}^{\infty} \frac{\sqrt{\lambda_n} e_n(s) g_n}{\tanh(\sqrt{\lambda_n} H)}, \mathcal{J}_D^{\infty} = \lim_{H \to \infty} \mathcal{J}_D^H = -(-\Delta_{\Gamma})^{1/2}.
$$

 $\lambda_n, e_n(s)$ the eigenvalues and the corresponding eigenfunctions of the Laplacian-Beltrami $-\Delta_{\Gamma}$, and $q_n := \langle e_n, q \rangle$. [N](#page-32-0)[at](#page-30-0)[ion](#page-31-0)[al](#page-32-0) [U](#page-9-0)[n](#page-10-0)[i](#page-51-0)[ve](#page-52-0)[rs](#page-9-0)[it](#page-10-0)[y](#page-51-0) [o](#page-52-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

- • Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of $\delta, u \rightarrow v$.
- \bullet Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

- • Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of $\delta, u \to v$.
- \bullet Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

- • Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of $\delta, u \to v$.
- \bullet Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..

- • Step 1. Existence and uniqueness of the solution of heat equation.
- Step 2. Energy estimates for the solution of heat equation and then apply the Arzela-Ascoli theorem to show that after passing to a subsequence of $\delta, u \to v$.
- \bullet Step 3. Such v is a weak solution of the effective problem.
- Step 4. Uniqueness of the solution of the effective problem to ensure the convergence without passing to a subsequence..
Step 3. For given ξ that is the test function of heat equation, $\xi \in C^{\infty}(\overline{\Omega}_1 \times (0,T)).$

Take a new test function ²

$$
\overline{\xi}(x,t) = \begin{cases} \xi(x,t), & \Omega_1, \\ \psi(x,t), & \overline{\Omega}_\delta, \end{cases}
$$

where $\psi := \psi(s, r, t)$ is the unique solution of

$$
\begin{cases}\n\sigma\psi_{rr} + \mu\Delta_{\Gamma}\psi = 0, & \Gamma \times (0,\delta), \\
\psi(s,0,t) = \xi(s,0,t) & \psi(s,\delta,t) = 0.\n\end{cases}
$$

2. X. Chen, C. Pond, and X. Wang, ARMA, 2012

By the weak solution of heat equation, it holds

$$
\int_0^T \int_{\Omega_1} k \nabla \xi \cdot \nabla u dx dt - \int_{\Omega} u_0(x) \overline{\xi}(x,0) dx - \int_0^T \int_{\Omega} (u \overline{\xi_t} + f \overline{\xi}) dx dt
$$

=
$$
- \int_0^T \int_{\Omega_\delta} \nabla \psi \cdot A(x) \nabla u dx dt.
$$

EBCs arise on the right-hand side.

Remark :

If the layer is of interior inclusion, EBCs are also derived ³.

n[at](#page-36-0)[ion](#page-37-0)[al](#page-38-0) [U](#page-9-0)[n](#page-10-0)[i](#page-51-0)[ve](#page-52-0)[rs](#page-9-0)[it](#page-10-0)[y](#page-51-0) [o](#page-52-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

22 / 57

^{3.} X. Geng, CPAA, 2023

(Recall
$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\boldsymbol{\tau}_1(p) = \mu_1 \boldsymbol{\tau}_1(p), A(x)\boldsymbol{\tau}_2(p) = \mu_2 \boldsymbol{\tau}_2(p).
$$
)

Theorem

^a Suppose
$$
\Gamma = \mathbb{T}^2 = \Gamma_1 \times \Gamma_2
$$
 and $\mu_1 > \mu_2$.
Let

$$
\lim_{\delta \to 0} \frac{\mu_2}{\mu_1} = c \in [0, 1], \quad \lim_{\delta \to 0} \frac{\sigma}{\delta} = \alpha \in [0, 1],
$$

$$
\lim_{\delta \to 0} \sigma \mu_i = \gamma_i \in [0, \infty], \quad \lim_{\delta \to 0} \mu_i \delta = \beta_i \in [0, \infty], \quad i = 1, 2.
$$

a. X. Geng, preprint, 2023

Theorem

(i) If $c \in (0,1]$, then as $\delta \to 0$, $u \to v$ in $C([0,T]; L^2(\Omega_1))$, where $v := v(x, t)$ is the solution of the effective problem with the EBCs listed in the following table :

Theorem

(ii) If $c = 0$, $\lim_{\delta \to 0} \delta^2 \mu_1/\mu_2 = 0$, then $u \to v$ in $C([0, T]; L^2(\Omega_1))$, where v is the solution of the effective problem with the EBCs listed in the table :

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always $v = 0$).
- If $\sigma\mu_1 \to \gamma_1 \in [0,\infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth q and for $H \in (0, \infty)$, define

$$
\mathcal{K}_D^H[g](s):=\Phi_R(s,0),
$$

where Φ is the unique bounded solution of

$$
\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}
$$

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always $v = 0$).
- If $\sigma\mu_1 \rightarrow \gamma_1 \in [0,\infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth q and for $H \in (0, \infty)$, define

 $\mathcal{K}_D^H[g](s) := \Phi_R(s,0),$

where Φ is the unique bounded solution of

$$
\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}
$$

- If $\frac{\sigma}{\delta} \to \infty$ as $\delta \to 0$, then the tangential diffusion rate has no influence (i.e. the EBC is always $v = 0$).
- If $\sigma\mu_1 \rightarrow \gamma_1 \in [0,\infty)$, then μ_2 has no influence on EBCs.
- Similarly, for smooth g and for $H \in (0, \infty)$, define

$$
\mathcal{K}_D^H[g](s) := \Phi_R(s,0),
$$

where Φ is the unique bounded solution of

$$
\begin{cases} \Phi_{RR} + \Phi_{s_1s_1} + c\Phi_{s_2s_2} = 0, & \Gamma \times (0, H), \\ \Phi(s, 0) = g(s), & \Phi(s, H) = 0. \end{cases}
$$

 $\Lambda_D^H[g](s) := \Phi_R^0(s,0)$, where Φ^0 is the unique bounded solution of

$$
\begin{cases} \Phi_{RR}^0 + \Phi_{s_1 s_1}^0 = 0, & \Gamma \times (0, H), \\ \Phi^0(s, 0) = g(s), & \Phi^0(s, H) = 0. \end{cases}
$$

 $\mathcal{D}_{D}^{H}[g](s_2) := \Phi_R(s_2, 0)$, where Φ is the unique bounded solution of

$$
\begin{cases} \Phi_{RR} + \Phi_{s_2 s_2} = 0, & \Gamma_2 \times (0, H), \\ \Phi(s_2, 0) = g(s_2), & \Phi(s_2, H) = 0. \end{cases}
$$

[N](#page-45-0)[at](#page-43-0)[ion](#page-44-0)[al](#page-45-0) [U](#page-9-0)[n](#page-10-0)[i](#page-51-0)[ve](#page-52-0)[rs](#page-9-0)[it](#page-10-0)[y](#page-51-0) [o](#page-52-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

27 / 57

The proof is similar to that in Case 1.

• Step 3. Construct an auxiliary function ϕ by defining

$$
\begin{cases}\n\sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\
\phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0.\n\end{cases}
$$

Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$
\begin{cases} \ \Phi_{RR}^{\delta} + \Phi_{s_1s_1}^{\delta} + \frac{\mu_2}{\mu_1} \Phi_{s_2s_2}^{\delta} = 0, & \Gamma \times (0, h_1), \\ \ \Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_1) = 0, \end{cases}
$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

- The proof is similar to that in Case 1.
- Step 3. Construct an auxiliary function ϕ by defining

$$
\begin{cases}\n\sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\
\phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0.\n\end{cases}
$$

Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$
\begin{cases} \ \Phi_{RR}^{\delta} + \Phi_{s_1s_1}^{\delta} + \frac{\mu_2}{\mu_1} \Phi_{s_2s_2}^{\delta} = 0, & \Gamma \times (0, h_1), \\ \ \Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_1) = 0, \end{cases}
$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

- The proof is similar to that in Case 1.
- Step 3. Construct an auxiliary function ϕ by defining

$$
\begin{cases}\n\sigma \phi_{rr} + \mu_1 \phi_{s_1 s_1} + \mu_2 \phi_{s_2 s_2} = 0, & \Gamma \times (0, \delta), \\
\phi(s, 0, t) = \xi(s, 0, t), & \phi(s, \delta, t) = 0.\n\end{cases}
$$

Let $r = R\sqrt{\sigma/\mu_1}$ and suppress the time dependence, leading to

$$
\begin{cases}\n\Phi_{RR}^{\delta} + \Phi_{s_1s_1}^{\delta} + \frac{\mu_2}{\mu_1} \Phi_{s_2s_2}^{\delta} = 0, & \Gamma \times (0, h_1), \\
\Phi^{\delta}(s, 0) = \xi(s, 0, t), & \Phi^{\delta}(s, h_1) = 0,\n\end{cases}
$$

where $h_1 = \delta \sqrt{\sigma/\mu_1}$ and $\Phi^{\delta}(s, R) := \phi(s, R\sqrt{\sigma/\mu_1}, t)$.

EBCs for the Heat Equation

Error Estimates

(Recall
$$
A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}.
$$
)

Theorem

Let $\sigma\mu \to 0$ and $\frac{\sigma}{\delta} \to \alpha \in [0, \infty)$ as $\delta \to 0$. Thus, the EBC is

$$
\frac{\partial v}{\partial n} + \alpha v = 0.
$$

Under some assumptions on $\partial\Omega_1, u_0, f$, the following holds. (i) If $\alpha \in (0,\infty)$, then

$$
||u(\cdot,t)-v(\cdot,t)||_{L^2(\Omega_1)}^2 \leq C\left(\left|\frac{\sigma}{\delta}-\alpha\right|+\sqrt{\delta}+\sqrt{\sigma\mu}\right).
$$

(*ii*) If $\alpha = 0$, then

$$
||u(\cdot,t)-v(\cdot,t)||_{L^{2}(\Omega_{1})}^{2} \leq C\left(\sqrt{\sigma\mu t e^{t}}+\sqrt{\delta t e^{t}}+\frac{\sigma t e^{t}}{\delta}\right).
$$

.

EBCs for the Heat Equation Error Estimates

Figure – An illustration of $||u(\cdot,t) - v(\cdot,t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

 \bullet Question : what is the maximal interval that keeps u and v close? • Answer : consider the steady state of u and v .

A typical example : the EBC is a Neumann condition.

EBCs for the Heat Equation Error Estimates

Figure – An illustration of $||u(\cdot,t) - v(\cdot,t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

 \bullet Question : what is the maximal interval that keeps u and v close? • Answer : consider the steady state of u and v .

A typical example : the EBC is a Neumann condition.

EBCs for the Heat Equation Error Estimates

Figure – An illustration of $||u(\cdot, t) - v(\cdot, t)||_{L^2(\Omega_1)}$ as $t \to \infty$.

- \bullet Question : what is the maximal interval that keeps u and v close?
- Answer : consider the steady state of u and v .
- A typical example : the EBC is a Neumann condition.

[EBCs for the Heat Equation](#page-10-0)

[EBCs for the Fisher-KPP Equation](#page-52-0)

[EBCs for the System](#page-58-0)

[Future Works](#page-74-0)

Xingri Geng (NUS) [Effective boundary conditions](#page-0-0)

n[at](#page-51-0)[ion](#page-52-0)[al](#page-53-0) [U](#page-51-0)[n](#page-52-0)[i](#page-57-0)[ve](#page-58-0)[rs](#page-51-0)[it](#page-52-0)[y](#page-57-0) [o](#page-58-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

31 / 57

EBCs for the Fisher-KPP Equation Full Model

 $(Recall A(x)\mathbf{n}(p) = \sigma \mathbf{n}(p), A(x)\mathbf{s}(p) = \mu \mathbf{s}(p), \forall x \in \Omega_{\delta}$. For any fixed $T > 0$, $u := u(x, t)$ satisfies

$$
\begin{cases}\n u_t - \nabla \cdot (A(x)\nabla u) = f(u), & x \in \Omega, t \in (0, T), \\
 u = 0, & x \in \partial\Omega, t \in (0, T), \\
 u(x, 0) = u_0(x), & x \in \Omega.\n\end{cases}
$$

•
$$
0 \le u_0 \in L^{\infty}(\Omega), f(u) = u(1 - u).
$$

• Transmission conditions :

$$
u_1 = u_\delta, \ k \frac{\partial u_1}{\partial \mathbf{n}} = A(x) \nabla u_\delta \cdot \mathbf{n}.
$$

 u_1, u_δ the restrictions of u on $\Omega_1 \times (0,T)$ and $\Omega_\delta \times (0,T)$. The derivation of EBCs is similar to that in the heat equation

EBCs for the Fisher-KPP Equation

Maximal Interval

Theorem

As $\delta \rightarrow 0$, u satisfies

$$
\max_{0\leq t\leq\infty}||u(\cdot,t)-v(\cdot,t)||_{L^2(\Omega_1)}\to 0,
$$

where v is the solution of the effective problem with any EBC as follows.

As $\delta \to 0$	$\frac{\sigma}{\delta} \to 0$	$\frac{\sigma}{\delta} \to \alpha \in (0, \infty)$	$\frac{\sigma}{\delta} \to \infty$
$\sigma\mu \to 0$	$\frac{\partial v}{\partial n} = 0$	$k\frac{\partial v}{\partial n} = -\alpha v$	$v = 0$
$\sqrt{\sigma\mu} \to \gamma \in (0, \infty)$	$k\frac{\partial v}{\partial n} = \gamma \mathcal{J}_D^{\infty}[v]$	$k\frac{\partial v}{\partial n} = \gamma \mathcal{J}_D^{\gamma/\alpha}[v]$	$v = 0$
$\sigma\mu \to \infty$	$\nabla_{\Gamma}v = 0$	$\nabla_{\Gamma}v = 0$	$v = 0$
$\sigma\mu \to \infty$	$\int_{\Gamma} \frac{\partial v}{\partial n} = 0$	$\int_{\Gamma} (k\frac{\partial v}{\partial n} + \alpha v) = 0$	

Xingri Geng (NUS) [Effective boundary conditions](#page-0-0)

The idea is to consider the steady state of u and v .

• Consider

$$
\begin{cases}\n-\nabla \cdot (A(x)\nabla U) = U(1-U), & x \in \Omega, \\
U = 0, & x \in \partial\Omega,\n\end{cases}
$$

where $U := U(x)$ is the unique positive solution.

 $\bullet V := V(x)$ is the unique positive solution of

$$
-k\Delta V = V(1 - V), \ x \in \Omega_1,
$$

with the EBCs listed in the above table (with v replaced by V).

The proof of the theorem

Outline of the proof :

- \bullet $||u(\cdot, t) U||_{L^2(\Omega)}$ is decreasing in t.
- For any $t \geq T_{\varepsilon}$,

$$
||u(\cdot, t) - U||_{L^2(\Omega_1)}
$$

\n
$$
\leq ||u(\cdot, t) - U||_{L^2(\Omega)}
$$

\n
$$
\leq ||u(\cdot, T_{\varepsilon}) - v(\cdot, T_{\varepsilon})||_{L^2(\Omega_1)} + ||v(\cdot, T_{\varepsilon}) - V||_{L^2(\Omega_1)}
$$

\n
$$
+ ||U - V||_{L^2(\Omega_1)} + ||u(\cdot, T_{\varepsilon}) - U||_{L^2(\Omega_2)}
$$

\n
$$
\leq C\varepsilon.
$$

 \leftarrow

EBCs for the Fisher-KPP equation Outline of the proof

• Finally, for a small $\delta > 0$,

$$
\max_{t \in [T_{\varepsilon}, \infty]} ||u(\cdot, t) - v(\cdot, t)||_{L^2(\Omega_1)}\n\n\leq \max_{t \in [T_{\varepsilon}, \infty]} ||u(\cdot, t) - U||_{L^2(\Omega_1)} + \max_{t \in [T_{\varepsilon}, \infty]} ||v(\cdot, t) - V||_{L^2(\Omega_1)}\n\n+ ||U - V||_{L^2(\Omega_1)}\n\n\leq ||u(\cdot, T_{\varepsilon}) - U||_{L^2(\Omega_1)} + \max_{t \in [T_{\varepsilon}, \infty]} ||v(\cdot, t) - V||_{L^2(\Omega_1)} + ||U - V||_{L^2(\Omega_1)}\n\n\leq C\varepsilon.
$$

 \leftarrow

- [EBCs for the Heat Equation](#page-10-0)
- [EBCs for the Fisher-KPP Equation](#page-52-0)
- [EBCs for the System](#page-58-0)

[Future Works](#page-74-0)

n[at](#page-57-0)[ion](#page-58-0)[al](#page-59-0) [U](#page-57-0)[n](#page-58-0)[i](#page-73-0)[ve](#page-74-0)[rs](#page-57-0)[it](#page-58-0)[y](#page-73-0) [o](#page-74-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024

37 / 57

EBCs for the System

Geometry of Domain

Denote $\mathbb{R}^2_- := \{(x, y) : x \in \mathbb{R}, y < 0\}$ and $\Gamma_1 := \{(x, y) : x \in \mathbb{R}, y = 0\}.$

Figure – $\Omega_{\delta} \subset \mathbb{R}^2$ is uniformly thick with thickness δ . $\Gamma_2 \to \Gamma_1$ as $\delta \to 0$. Xingri Geng (NUS) [Effective boundary conditions](#page-0-0) [N](#page-60-0)[at](#page-58-0)[ion](#page-59-0)[al](#page-60-0) [U](#page-57-0)[n](#page-58-0)[i](#page-73-0)[ve](#page-74-0)[rs](#page-57-0)[it](#page-58-0)[y](#page-73-0) [o](#page-74-0)[f Si](#page-0-0)[ngap](#page-78-0)ore April 18, 2024 38 / 57

EBCs for the System Full Model

Consider the coupled Fisher-KPP equations (the Lotka-Volterra competition diffusion system) in \mathbb{R}^2

$$
\begin{cases}\n\partial_t u_1 - \nabla \cdot (D_1(x, y) \nabla u_1) = f_1(u_1, u_2), & (x, y) \in \mathbb{R}^2, t > 0, \\
\partial_t u_2 - \nabla \cdot (D_2(x, y) \nabla u_2) = f_2(u_1, u_2), & (x, y) \in \mathbb{R}^2, t > 0, \\
(u_1, u_2)(x, y, 0) = (u_{1,0}, u_{2,0})(x, y), & (x, y) \in \mathbb{R}^2,\n\end{cases}
$$

where

•
$$
u_1 := u_1(x, y, t), u_2 := u_2(x, y, t),
$$

- $f_1(u_1, u_2) = r_1u_1(1-u_1-b_1u_2), f_2(u_1, u_2) = r_2u_2(1-u_2-b_2u_1),$
- $b_1, b_2 \in (0, 1)$, the initial value $u_{k,0}(k = 1, 2)$ satisfying

$$
\begin{cases} 0 \le u_{k,0} \le 1, u_{k,0} \ne 0, \\ u_{k,0} \text{ are } C^{\infty}-\text{smooth, and compactly supported.} \end{cases}
$$

EBCs for the System Assumptions on $D_k(x, y)$

Let

$$
D_k(x, y) = \begin{cases} a_{ij}^k(x, y), & \text{if } y \in (0, \delta), \\ d_k, & \text{otherwise.} \end{cases}
$$

 $d_k > 0$ are constants, $a_{ij}^k(x, y)$ is positive-definite and satisfies the optimally aligned condition in the road :

$$
D_k(x, y)\mathbf{n}(x) = \sigma_k \mathbf{n}(x), D_k(x, y)\mathbf{s}(x) = \mu_k \mathbf{s}(x), \ \ \forall y \in (0, \delta),
$$

where $\mathbf{n}(x) = (0, 1), \mathbf{s}(x) = (1, 0).$

Motivated by the work of Li and $Wang⁴$, we have the existence and uniqueness of the system.

Theorem

For any fixed $T > 0$, the system admits a unique bounded solution

$$
u_k \in V_2^{1,1}(\mathbb{R}^2 \times (0,T)), \quad k = 1,2.
$$

Moreover, $0 \le u_k \le M$ for some M independent of δ , and

 $u_k \in C^{\infty}_{loc} (\overline{\Omega}_{\delta} \times (0,T)) \cap C^{\infty}_{loc} (\overline{R}_{\delta} \times (0,T)) \cap C^{\infty}_{loc} (\overline{\Omega}_{-} \times (0,T)).$

Theorem

For any fixed $T > 0$, and $k = 1, 2$, let

$$
\lim_{\delta \to 0} \sigma_k \mu_k = \gamma_k \in [0, \infty], \lim_{\delta \to 0} \frac{\sigma_k}{\delta} = \alpha_k \in [0, \infty], \lim_{\delta \to 0} \mu_k \delta = \beta_k \in [0, \infty].
$$

Then $(u_1, u_2) \to (v_1, v_2)$ in $C([0, T], L^2_{loc}(\mathbb{R}^2)) \times C([0, T], L^2_{loc}(\mathbb{R}^2))$ as $\delta \rightarrow 0$, where (v_1, v_2) is the solution of the effective system

$$
\begin{cases}\n\partial_t v_1 - d_1 \Delta u_1 = r_1 v_1 (1 - v_1 - b_1 v_2), & x \in \mathbb{R}, y \neq 0, t > 0, \\
\partial_t v_2 - d_2 \Delta v_2 = r_2 v_2 (1 - v_2 - b_2 v_1), & x \in \mathbb{R}, y \neq 0, t > 0, \\
(v_1, v_2)(x, y, 0) = (u_{1,0}, u_{2,0})(x, y), & (x, y) \in \mathbb{R}^2,\n\end{cases}
$$

with the EBCs listed below.

Case 1.
$$
\frac{\sigma_k}{\delta} \to 0
$$
 as $\delta \to 0$.
\nAs $\delta \to 0$ $\gamma_k = 0$ $\gamma_k \in (0, \infty)$ $\gamma_k = \infty$
\n $\beta_k \in [0, \infty)$ $\frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y} = 0$ $\frac{\partial v_k^-}{\partial y} = \gamma_k \mathcal{J}_1^{\infty} [v_k^-],$
\n $\beta_k = \infty$ $\frac{\partial v_k^-}{\partial y} = \frac{\partial v_k^+}{\partial y} = 0$ $\frac{\partial v_k^-}{\partial y} = \gamma_k \mathcal{J}_1^{\infty} [v_k^+],$ $v_k^- = v_k^+ = 0$

• The dash lines mean such cases do not exist.

 $v_k^ \bar{k}$ and v_k^+ ⁺ : the restrictions of v_k on \mathbb{R}^2 × $(0,T)$ and \mathbb{R}^2 × $(0,T)$.

44 / 57

The condition $\sigma_k \delta^3 \to 0$ can be removed if $\frac{\mu_k}{\sigma_k} \to 0$.

 $\mathcal{J}^{\beta/\gamma}_1$ $\int_1^{\beta/\gamma}$, $\mathcal{J}_2^{\beta/\gamma}$ – the Dirichlet-to-Neumann mapping.

• For $H \in (0, \infty)$ and smooth g on R, define

$$
\mathcal{J}_1^H[g] := \Psi_Y(x,0) \text{ and } \mathcal{J}_2^H[g] := \Psi_Y(x,H),
$$

where Ψ is the unique solution of

$$
\left\{\begin{array}{ll}\Psi_{YY}+\Psi_{xx}=0,&\mathbb{R}\times(0,H),\\ \Psi(x,0)=g(x),&\Psi(x,H)=0.\end{array}\right.
$$

• Moreover,

$$
\mathcal{J}_1^{\infty}[g] = \lim_{H \to \infty} \mathcal{J}_1^H[g] := -\left(-\partial_{xx}\right)^{1/2} g, \ \mathcal{J}_2^{\infty}[g] = \lim_{H \to \infty} \mathcal{J}_2^H[g] = 0,
$$

where $(-\partial_{xx})^{1/2}$ g is the fractional Laplacian of order 1/2.

EBCs for the System Effect of EBCs

Consider the Lotka-Volterra competition diffusion system :

$$
\begin{cases}\n\partial_t v_1 - \Delta v_1 = v_1(1 - v_1 - b_1v_2), & x \in \mathbb{R}, y \neq 0, t > 0, \\
\partial_t v_2 - d\Delta v_2 = rv_2(1 - v_2 - b_2v_1), & x \in \mathbb{R}, y \neq 0, t > 0, \\
[v_1] = 0, [(v_1)_y] = -2a_1(v_1)_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\
[v_2] = 0, [d(v_2)_y] = -2a_2(v_2)_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\
(v_1, v_2)(x, y, 0) = (v_{10}, v_{20})(x, y), & (x, y) \in \mathbb{R}^2,\n\end{cases}
$$

where

•
$$
[v_1]
$$
_{y=0} := $v_1(x, 0+, t) - v_1(x, 0-, t)$;

• $dr > 1, b_1, b_2 \in (0, 1)$ and $a_1, a_2 \in (0, \infty)$ with $a_1 \ll a_2$;

• the initial value (v_{10}, v_{20}) satisfies

$$
\begin{cases} 0 \le v_{10} \le 1, v_{10} \neq 0, \\ 0 \le v_{20} \le 1, v_{20} \neq 0, \\ v_{10}, v_{20} \text{ are compactly supported.} \end{cases}
$$

If no competition effect, the Fisher-KPP equation with a Wenztel-type boundary condition (can seen as an EBC) reads as

$$
\begin{cases}\n\partial_t v - \Delta v = v(1 - v), & x \in \mathbb{R}, y \neq 0, t > 0, \\
[v] = 0, [v_y] = -2av_{xx}, & x \in \mathbb{R}, y = 0, t > 0, \\
v(x, y, 0) = v_0(x, y), & (x, y) \in \mathbb{R}^2.\n\end{cases}
$$

- This model was derived by Li and Wang⁵.
- The spreading speed and shape was studied by Chen, He and Wang^6 .

6. X. Chen, J. He and X. Wang, ARMA, 2023

^{5.} H. Li and X. Wang, Nonlinearity, 2017

Theorem (Chen, He and Wang)

For each $\nu \in (0,1)$,

$$
\lim_{t \to \infty} ||v(\cdot, t)||_{L^{\infty}(\Omega^{c}(t))} = 0, \quad \lim_{t \to \infty} ||v(\cdot, t) - 1||_{L^{\infty}(\Omega(t))} = 0,
$$

where $\Omega^c(t) = \mathbb{R}^2 \setminus \Omega(t)$ and $\Omega(t) = t\Omega(1) := \{(tx, ty) | (x, y) \in \Omega(1) \}.$ Moreover,

$$
\Omega(1) = \{(x, y) | \varphi^*(x, y, 1) < 1\}
$$

and

$$
\varphi^*(x, y, t) := \min_{s \ge 0} \left\{ \frac{x^2}{4(t + as)} + \frac{(|y| + s)^2}{4t} \right\}.
$$

EBCs for the System Effect of EBCs

Figure – Asymptotic Spreading Shape $\Omega(1)$

 \leftarrow
EBCs for the System Effect of EBCs

- $R_a(\theta)$: the asymptotic propagation speed along angle θ ;
- $\theta_0 = \arcsin \frac{2a}{1 + \sqrt{1 + 4a^2}}.$
- $\Omega(1)$ is called the asymptotic expansion shape :

$$
\lim_{t \to \infty} v(xt, yt, t) = \begin{cases} 0, & (x, y) \in \Omega^c(1), \\ 1, & (x, y) \in \Omega(1). \end{cases}
$$

EBCs for the System Effect of EBCs

Theorem

^a There exist $\Sigma_1, \Sigma_2 \subset \mathbb{R}^2$ such that (i) $\Sigma_1 \subset \Omega_{a_1}(1) \subset \Sigma_2$; (*ii*) For each small $\nu > 0$, the following spreading results hold :

$$
\begin{cases}\n\lim_{t \to \infty} \sup_{\Sigma_2^c((1+\nu)t)} (|v_1| + |v_2|) = 0, \\
\lim_{t \to \infty} \sup_{\Sigma_2((1-\nu)t) \setminus \Sigma_1((1+\nu)t)} (|v_1| + |v_2 - 1|) = 0, \\
\lim_{t \to \infty} \sup_{\Sigma_1((1-\nu)t)} (|v_1 - k_1| + |v_2 - k_2|) = 0,\n\end{cases}
$$

where
$$
(k_1, k_2) = \left(\frac{1-b_1}{1-b_1b_2}, \frac{1-b_2}{1-b_1b_2}\right), \ \Sigma_1 = (1-b_1)\Omega_{a_1}(1), \ \Sigma_2 = \Omega_{a_2}(\sqrt{dr}).
$$

a. X. Geng and H. Huang, preprint, 2023

52 / 57

 \leftarrow

- [EBCs for the Heat Equation](#page-10-0)
- [EBCs for the Fisher-KPP Equation](#page-52-0)
- [EBCs for the System](#page-58-0)

Future Works

EBCs involving the fractional Laplacian of any order. Suppose

$$
A(x)\mathbf{n}(p) = \sigma d(x)^a \mathbf{n}(p), \ A(x)\mathbf{s}(p) = \mu d(x)^a \mathbf{s}(p),
$$

where a is a constant; $d(x)$ is the distance of x onto $\partial\Omega$; p is the unique projection of x on $\partial\Omega$, and $s(p)$ is an arbitrary tangent vector at p on $\partial\Omega$. Then $A(x)$ is degenerate at the boundary $\partial\Omega$.

Figure – $\Omega = \Omega_1 \cup \overline{\Omega}_{\delta}$. Ω is fixed.

- Apply the idea of EBCs to the wave equation and the Schrödinger equation, which can provide a physical understanding of the effects of the layer.
- Study the propagation speed for the Fisher-KPP equation on the upper half plane with the boundary condition involving fractional Laplacian of any order.
- Consider the propagation speed for the Fisher-KPP equation on the whole plane with multiple roads, on which a Wentzell-type boundary condition is imposed to enhance the speed.

Publications

- ¹ X. Geng, Effective boundary conditions arising from the heat equation with three-dimensional interior inclusion, Comm. Pure Appl. Anal., 22 (2023), 1394-1419.
- ² X. Geng, Effective boundary conditions for heat equation arising from anisotropic and optimally aligned coatings in three dimensions, arXiv preprint arXiv : 2301.13657, (2023).
- ³ X. Geng, Effective boundary conditions for the Fisher-KPP equation on a domain with 3-dimensional optimally aligned coatings, arXiv preprint arXiv :2307.10429, (2023).
- ⁴ X. Geng and Y. Wang, Fractional Laplacian boundary condition as a singular limit of problems degenerating at the boundary, in preparation.
- ⁵ X. Geng and H. Huang, Asymptotic spreading of competition diffusion systems with an effective boundary condition on a road, in preparation.

THANK YOU !

Xingri Geng (NUS) [Effective boundary conditions](#page-0-0)