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Introduction

Motivations

Nature Reserve (diffusion rate: small)
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Introduction

Common Features

@ Domain contains a thin component :

e thermal barrier coatings for blades

e a road for nature reserve;

e membrane for cells.




Introduction

Common Features

@ Domain contains a thin component :

e thermal barrier coatings for blades
e a road for nature reserve;

e membrane for cells.

e Diffusion tensor on different components is drastically different :

e in coating model, diffusion tensor is small;

e in nature reserve model, diffusion rate is large;

e in cell model, diffusion rate in membrane is small.




Introduction

o Issues :

o The multi-scale in size and different diffusion tensors lead to
computational difficulty ;

e It is hard to see the effect of the thin component ;
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Introduction

o Issues :

o The multi-scale in size and different diffusion tensors lead to
computational difficulty ;

e It is hard to see the effect of the thin component ;

@ Resolution :

e Think of the thin component as widthless surface and impose
"effective boundary conditions" (EBCs).

Effective boundary conditions



© EBCs for the Heat Equation

boundary conditi



EBCs for the heat equation

Geometry of Domain

Figure - Q = Q1 UQs C R™. 9Q — 995 as § — 0.

o (25 : uniformly thick with thickness §.
o € : fixed with 9Q(=T) € C2.
e Use curvilinear coordinates (s,r) in € :

x =p(s)+rn(s), Ve Qs,

p—the projection of x onto 9§21, n—unit outer normal vector of €2y,
r— distance from z to 901, s = (s1, ..., sp—1)— local coordinates.
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EBCs for the Heat Equation

Full Model

For any fixed T' > 0, u := u(z,t) satisfies

u — V- (A(x)Vu) = f(z,t), ze€Q,te(0,T),
uw=0, zedte(0,T),
u(z,0) = ug(x), x €.

o ug € L*(Q), f € L*(2 x (0,T));

e Transmission conditions on 9Q; x (0,7) :
Ou
On
uy, us— the restrictions of u on € x (0,7") and Qs x (0,7 ;

Goal : given some assumptions on the diffusion tensor A(z), u — some
v as  — 0 with some EBCs satisfied.

up = ug, k = A(z)Vus - n,
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o In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

ve boundary conditions



o In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

e In 1974, Sanchez-Palencia studied elliptic and heat equations with
thin diamond-shaped inclusions;
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o In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

e In 1974, Sanchez-Palencia studied elliptic and heat equations with
thin diamond-shaped inclusions;

o In 1980, Brezis, Caffarelli and Friedman studied the elliptic
problem in both interior and boundary reinforcement cases ;
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o In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

e In 1974, Sanchez-Palencia studied elliptic and heat equations with
thin diamond-shaped inclusions;

o In 1980, Brezis, Caffarelli and Friedman studied the elliptic
problem in both interior and boundary reinforcement cases ;

e Lots of work on elastic equations, electromagnetic equations,
nonlinear diffusion equations, etc.
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o In 1959, Carlaw and Jaeger derived EBCs in some simple cases in
their classic book Conduction of Heat in Solids ;

e In 1974, Sanchez-Palencia studied elliptic and heat equations with
thin diamond-shaped inclusions;

o In 1980, Brezis, Caffarelli and Friedman studied the elliptic
problem in both interior and boundary reinforcement cases ;

e Lots of work on elastic equations, electromagnetic equations,
nonlinear diffusion equations, etc.

e Among these work, the diffusion tensor A(zx) is isotropic in the
layer.
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History

e In 2006, Wang and his collaborators considered optimally aligned
coatings;




e In 2006, Wang and his collaborators considered optimally aligned
coatings;

e In 2012, Chen, Pond and Wang studied the optimally aligned
coating in 2-dimensional case to derive new EBCs;;
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e In 2006, Wang and his collaborators considered optimally aligned
coatings;

e In 2012, Chen, Pond and Wang studied the optimally aligned
coating in 2-dimensional case to derive new EBCs;;

e In 2017, Li and Wang used the idea of EBCs to derive the model
about the effect of fast diffusion on the road, which is different
from Berestycki’s model ;
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e In 2006, Wang and his collaborators considered optimally aligned
coatings;

e In 2012, Chen, Pond and Wang studied the optimally aligned
coating in 2-dimensional case to derive new EBCs;;

e In 2017, Li and Wang used the idea of EBCs to derive the model
about the effect of fast diffusion on the road, which is different
from Berestycki’s model ;

e In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model
by using the ideal of EBCs;
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e In 2006, Wang and his collaborators considered optimally aligned
coatings;

e In 2012, Chen, Pond and Wang studied the optimally aligned
coating in 2-dimensional case to derive new EBCs;;

e In 2017, Li and Wang used the idea of EBCs to derive the model
about the effect of fast diffusion on the road, which is different
from Berestycki’s model ;

e In 2021, Li, Su, Wang and Wang derived the Bulk-Surface model
by using the ideal of EBCs;

o In 2023, Chen, He and Wang studied the effect of EBCs on the
propagation speed of the Fisher-KPP equation.
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EBCs for the Heat Equation

Assumptions on A(z)
In our case, let n = 3, and

kIgX3 T € Ql
A — ) )
(:C) { (aij(l'))gxg, x € Q.

e k> 0 constant, (aij)3x3 : anisotropic and positive-definite.
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EBCs for the Heat Equation

Assumptions on A(z)
In our case, let n = 3, and

kIgX3 T € Ql
A — ) )
(z) { (aij(x))3x3, x € Q.

e k> 0 constant, (aij)3x3 : anisotropic and positive-definite.

o (5 is “optimally aligned” ! : for any = € Qs, the normal vector n(p)
is always an eigenvector of A(x).

1. S Rosencrans and X. Wang, SIAM J. Appl. Math, 2006
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EBCs for the Heat Equation

Assumptions on A(z)
In our case, let n = 3, and

kIgX3 T € Ql
A — ) )
(:C) { (aij(l'))gxg, x € Q.

e k> 0 constant, (aij)3x3 : anisotropic and positive-definite.

o (5 is “optimally aligned” ! : for any = € Qs, the normal vector n(p)
is always an eigenvector of A(x).

o A(z) satisfies :

A(z)n(p) = on(p), A(z)T1(p) = m71(p), A(x)72(p) = par2(p),

o T1,To— two eigenvectors of A(x);
e o— “normal diffusion rate" ;
o i1, o— “tangential diffusion rate".

1. S. Rosencrans and X. Wang, STAM J. Appl. Math, 2006
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EBCs for the Heat Equation

Two assumptions of A(x)

o Case 1. p1 = pa.
Assume A(z) satisfies

A(z)n(p) = on(p), A(x)s(p) = ps(p), V€ s,

where (o, 1) = (o(9), 1(9)) ; n(p)— unit outer normal vector of Qy,
s(p)— arbitrary tangent vector at p on 0.
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EBCs for the Heat Equation

Two assumptions of A(x)

o Case 1. p1 = pa.
Assume A(z) satisfies

A(z)n(p) = on(p), A(x)s(p) = ps(p), V€ s,

where (o, 1) = (o(9), 1(9)) ; n(p)— unit outer normal vector of Qy,
s(p)— arbitrary tangent vector at p on 0.

o Case 2. py # po.
Assume 9§ = T?, and A(x) satisfies

~—

A(z)n(p) = on(p),
A(z)T1(p) = a1(p),
A(x)T2(p) = p2t2(p).

Xingri Geng (NUS) Effective boundary conditions 15 /57



EBCs for the Heat Equation

Weak solution

Denote Q7 :=Q x (0,T) and St := 92 x (0, 7).
o WIQr) = {u e L(Qr) ‘w € LX(Qr)} and WiL(Qr) is the

closure of C* functions vanishing near St in VV2 (Qr)-norm.
° Vyi 0 Y(Qr) = W21,’([))(QT) NC([0,T]; L*(2)) -

Definition

u is a weak solution of the heat equation, if u € ‘/21760(QT) and

Alu, &) = — /Quo(sv)ﬁ(x,O)da: +/ (A(x)Vu) - V& — u& — fédtdx

T

=0

for any £ € W217’01(QT) satisfying { =0 at t =T.

Xingri Geng (NUS) Effective boundary conditions 16 /57



EBCs for the Heat Equation

Case 1 : 1 = p2

(Recall A()n(p) = on(p), A(z)s(p) = ps(p), Y € Q)

¢ Let

. O .
}gr(l)g—ae [0, 00] and glir(l)ap—’}’e [0, co.

As 6 — 0, u— v in C([0,T); L3(Q)), where v := v(z,t) is the unique
solution of the effective problem

vy — kAv = f(z,t), x € Q,te€(0,T),
v(z,0) = up(x), r €N,

with the EBCs listed in the table below :
a. X. Geng, preprint, 2023
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EBCs for the Heat Equation

Case 1 : 1 = p2

Asd— 0 =0 $—ac (0,00) % — 00

op— 0 %:0 k%z—av v=20

Vo — 7y € (0,00) | k8L =~T5v] kS =~ ey v=0
VF’UZO, VF’UZO,

ol — 00 ) 5 v=20
p =0 [u(kSE4av)=0

@ n— unit outer normal vector of T'.
o Vr— the surface gradient operator.

° g/ “_ a Dirichlet-to-Neumann mapping.
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EBCs for the Heat Equation

Case 1 : pu1 = piz

Given a smooth function g(s) and H € (0, 00), define
Tp (9] == r(s,0),

where ¥ := (s, R) is the unique solution of

Upp+Ar¥ =0, T x (0,H),
U(s,0) =g(s), U(s,H) = 0.

Moreover,

Tl = = 3 Lo g — i T = ~(~Ar)

n=1

An, €n(s)— the eigenvalues and the corresponding eigenfunctions of the
Laplacian-Beltrami —Ar, and g, := {(en, g).

Xingri Geng (NUS) Effective boundary conditions 19 /57



EBCs for the Heat Equation

Proof of the theorem

Outline of the proof :

e Step 1. Existence and uniqueness of the solution of heat equation.
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EBCs for the Heat Equation

Proof of the theorem

Outline of the proof :
e Step 1. Existence and uniqueness of the solution of heat equation.

e Step 2. Energy estimates for the solution of heat equation and then
apply the Arzela-Ascoli theorem to show that after passing to a
subsequence of §, u — v.
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EBCs for the Heat Equation

Proof of the theorem

Outline of the proof :
e Step 1. Existence and uniqueness of the solution of heat equation.

e Step 2. Energy estimates for the solution of heat equation and then
apply the Arzela-Ascoli theorem to show that after passing to a
subsequence of §, u — v.

@ Step 3. Such v is a weak solution of the effective problem.
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EBCs for the Heat Equation

Proof of the theorem

Outline of the proof :
e Step 1. Existence and uniqueness of the solution of heat equation.

e Step 2. Energy estimates for the solution of heat equation and then
apply the Arzela-Ascoli theorem to show that after passing to a
subsequence of §, u — v.

@ Step 3. Such v is a weak solution of the effective problem.

o Step 4. Uniqueness of the solution of the effective problem to
ensure the convergence without passing to a subsequence..
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EBCs for the Heat Equation

Proof of the theorem

Step 3. For given ¢ that is the test function of heat equation,
£eC>®( x(0,7)).

Take a new test function 2

- f(l‘,t), Q 9
§lat) :{ Went), Q.

where ¢ := (s, 7,t) is the unique solution of

o + pAry =0, (07 5)
T,ZJ(SaOat) = g(S,O,t) (575a t)

2. X. Chen, C. Pond, and X. Wang, ARMA, 2012

Xingri Geng (NUS)
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EBCs for the heat equation

Proof of the theorem

e By the weak solution of heat equation, it holds

/0 ! /Q KVE - Vudrdi - /Q wo(2)E(x, 0)dx — /0 ! /Q (uFs + fE)dudt

T
= —/ Vi - A(z)Vudzdt.
0o Jas
e EBCs arise on the right-hand side.

Remark :

o If the layer is of interior inclusion, EBCs are also derived 3.

3. X. Geng, CPAA, 2023
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EBCs for the heat equation

Case 2 : 1 # p2

(Recall A(z)n(p) = on(p), A(x)71(p) = p71(p), A(x)T2(p) = pa72(p).)

@ Suppose I' = T2 =T'1 x 'y and pq > po.

Let
lim 22 =ce[0,1], lim2 =a € 0,1],
6—0 f11 6—0 ¢

lim op; =~; € [0,00], lim p;d = B; € [0,00], i=1,2.
6—0 6—0

a. X. Geng, preprint, 2023
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EBCs for the Heat Equation

Case 2 : 1 # p2

(i) If c € (0,1], then as 6 — 0, u — v in C([0,T); L*(Q1)), where
v :=v(z,t) is the solution of the effective problem with the EBCs listed
in the following table :

Asd— 0 £ =0 ¢ = ac(0,00) g — 00
opur — 0 g—z:O k%:—av v=0
Vo — 7 € (0,00) k% =1 K% [v] kr% = MICB/QM v=0
VFUZO, VFUZO3
r =0 Jo(k3E 4+ av) =0

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Heat Equation

Case 2 : 1 # p2

(i7) If c = 0,%1113)52/11/@ =0, then u — v in C([0,T]; L?(£21)), where v
%

1s the solution of the effective problem with the EBCs listed in the table :

Asd—0 ‘ =0 ¢ —ae€(0,00) g — 00
opy — 0 d=0 k% = —av v=0
VoL = € (0,00) | kB = nAF[] RS =AW v=0
v v
2oy, 2 —,
opy — 00, oy — 0 dﬂa (f;” v=20
room =0 frl(a_z"'m’):o
v __ Ov __
2=y, =0,

oy — 00,

5725 1 € (0,00) fr, (65 = D5 [0)  Jy, (ki —DpR])  v=0
vV 2 2 s

on

=0 =0

VF’UZO, VFUZO,
Ol — 00, Oty — 00 5 oo v=20
ron =0 ron =0

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Heat Equation

Case 2 : 1 # p2

o If § — oo as d — 0, then the tangential diffusion rate has no
influence (i.e. the EBC is always v = 0).
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EBCs for the Heat Equation

Case 2 : 1 # p2

o If § — oo as d — 0, then the tangential diffusion rate has no
influence (i.e. the EBC is always v = 0).

o If opuy — 1 € [0,00), then uo has no influence on EBCs.
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EBCs for the Heat Equation

Case 2 : 1 # p2

o If § — oo as d — 0, then the tangential diffusion rate has no
influence (i.e. the EBC is always v = 0).

o If opuy — 1 € [0,00), then uo has no influence on EBCs.
e Similarly, for smooth ¢ and for H € (0,00), define

KB [9](s) :== Pr(s,0),
where @ is the unique bounded solution of

Orr+ D55, +cPsys, =0, T'x(0,H),
®(s,0) = g(s), O(s,H) =0.
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EBCs for the Heat Equation

Case 2 : 1 # p2

o AH[g](s) := ®%(s,0), where ®° is the unique bounded solution of

S$181

Ohp + ©,, =0, T x(0,H),
®0(s,0) = g(s),  @°(s,H) = 0.

o DH[g](s2) := ®R(s2,0), where ® is the unique bounded solution of

{ (I)RR + (1)8282 = 07 FQ X (O7H)7
D(s2,0) = g(s2), P(s9, H)=0.
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EBCs for the Heat Equation

The proof of the theorem

@ The proof is similar to that in Case 1.

Xingri Ger (NUS) Effective boundary conditions



EBCs for the Heat Equation

The proof of the theorem

@ The proof is similar to that in Case 1.

e Step 3. Construct an auxiliary function ¢ by defining

OQrr + N1¢81S1 + N2¢szsz =0, I'x (0’5)7
¢(3707t) = g(S,O,t), (b(S,(S, t) =0.
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EBCs for the Heat Equation

The proof of the theorem

@ The proof is similar to that in Case 1.

e Step 3. Construct an auxiliary function ¢ by defining

OQrr + N1¢81S1 + N2¢szsz =0, I'x (0’5)7
¢(3707t) = g(S,O,t), (b(S,(S, t) =0.

e Let » = Ry/o/u1 and suppress the time dependence, leading to

5181 5282

% + OO +%<1>5 =0, I'x(0,hy),
q)6(370) = f(S,O,t), q)6(37h1) - O’

where hy = 6y/0/p1 and ®(s, R) := é(s, R\/o /11, 1).

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Heat Equation

Error Estimates
(Recall A(x)n(p) = on(p), A(x)s(p) = ps(p), Vr € Qs.)

Let oy — 0 and § — a € [0,00) as § — 0. Thus, the EBC' is

0
—v-i-av:O.

on

Under some assumptions on 0§21, uq, f, the following holds.
(1) If « € (0,00), then

lu(s) = v, D2z, < © (|5 —a| + Vo +van).

(i) If « =0, then

t t
u.0) = o OBy < € (Vawtet + Vet + 5 ).

Xingri Geng (NUS) Effective boundary conditions 29 /57



EBCs for the Heat Equation

Error Estimates

Figure — An illustration of ||u(-,t) — v(-,t)||12(q,) as t — co.

@ Question : what is the maximal interval that keeps u and v close?




EBCs for the Heat Equation

Error Estimates

Figure — An illustration of ||u(-,t) — v(-,t)||12(q,) as t — co.

@ Question : what is the maximal interval that keeps u and v close?

o Answer : consider the steady state of u and v.




EBCs for the Heat Equation

Error Estimates

Figure — An illustration of ||u(-,t) — v(-,t)||12(q,) as t — co.

@ Question : what is the maximal interval that keeps u and v close?
o Answer : consider the steady state of u and v.

@ A typical example : the EBC is a Neumann condition.

Xingri G (NUS) Effective boundary conditions
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EBCs for the Fisher-KPP Equation

Full Model

(Recall A(x)n(p) = on(p), A(z)s(p) = ps(p),Vz € Q5.)
For any fixed T' > 0, u := u(x,t) satlsﬁes

u — V- (A(x)Vu) = f(u), ze€Q,te(0,T),
w=0, z et e (0,T),
u(z,0) = uo(z), x €.

0 0<upe L®Q), f(u) =u(l —u).
@ Transmission conditions :

Ouy
On
uy, us— the restrictions of u on ; x (0,7") and Qs x (0,7).

The derivation of EBCs is similar to that in the heat equation

up = ug, k = A(z)Vus - n.

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Fisher-KPP Equation

Maximal Interval

As 6 — 0, u satisfies

OIS%%};OHU('J) - U('7t)HL2(Ql) — 0,

where v is the solution of the effective problem with any EBC as follows.

Asd—0 =0 $—ac (0,00) % — 00

op— 0 %:0 k%z—av v=20

Vo =y € (0,00) | k2 =T 0] k3= q/’jg/a[v] v=0
VF’U:O, VF’U:O,

ol — 00 5 ) v=20
rom =0 Jr (kS +av) =0

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Fisher-KPP Equation

The proof of the theorem

The idea is to consider the steady state of u and v.

e Consider

V- (Ax)VU)=U(1-U), z€Q,
U =0, x € 011,

where U := U(x) is the unique positive solution.
e V :=V(x) is the unique positive solution of
—kAV =V(1-V), z €y,

with the EBCs listed in the above table (with v replaced by V).

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Fisher-KPP equation

The proof of the theorem

Outline of the proof :

o [|u(-,t) = Ul[r2(q) is decreasing in t.

e For any ¢t > T,

lu(-,t) = UllL2(ay)

< lul-,t) = Ullzz @)

<u(, T2) = v( Tl 2y + v(5T2) = V2
U = V2, + u( Te) = Ull 20y

< Ce.

Xingri Geng (NUS) Effective boundary conditions



EBCs for the Fisher-KPP equation

Outline of the proof

o Finally, for a small § > 0,

max |[u(-,t) — v(- 1)l 12(q,)

te[T€7 ]
<t6%?§o]||u( t) = Ullr2y) +t%?f< [[v(-,t) = Vllz2(0)
U = V200,

<|u(-T:) = Ullr2(a,) + A }H’U( t) = Vllrzn) + 11U = Vi)

€

< Ce.

Xingri Geng (NUS) Effective boundary conditions
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EBCs for the System

Geometry of Domain

Denote R? := {(x,9) : x € R,y < 0} and Ty := {(z,y) : * € R,y = 0}.

y
+
nature reserve: Rs Uy,
)
road/buffer zone: Qs % T
n
] x
nature reserve: R? _
Ug

Figure — Q5 C R? is uniformly thick with thickness 8. 'y — I'; as § — 0.
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EBCs for the System

Full Model

Consider the coupled Fisher-KPP equations (the Lotka-Volterra
competition diffusion system) in R?

8tul -V (Dl(fU,y)VUl) = fl(u17u2)7 (‘/E7y) € R2at > Oa
815“2 -V (DQ(xay)VUQ) = f2(U1,U2), (xvy) € R2at > Oa
(ul,u2)(x,y,0) = (U170,U2’0)($,y), (ﬁ,y) € R2’

where
o uy :=uy(x,y,t),uz := uz(x,y,t),
o fi(ur,ug) =riui(l —uy — brug), folui,ug) = rous(l — ug — bouy),
@ by,by € (0,1), the initial value ugo(k = 1,2) satisfying

0< UE,0 < 17uk,0 ;’é 07
upo are C°°— smooth, and compactly supported.

Xingri Geng (NUS) Effective boundary conditions



EBCs for the System

Assumptions on Dy (z,y)

o Di(w,y) = afi(z,y), ifye(0,9),
BT Y= dp, otherwise.

e dj > 0 are constants, afj (z,y) is positive-definite and satisfies the

optimally aligned condition in the road :
Di(z,y)n(z) = opn(x), D(z,y)s(x) = wes(z), Yy € (0,0),

where n(z) = (0,1),s(x) = (1,0).

Xingri Geng (NUS) Effective boundary conditions



EBCs for the System

Existence and uniqueness

Motivated by the work of Li and Wang?, we have the existence and
uniqueness of the system.

For any fixed T > 0, the system admits a unique bounded solution
1,12
up € Vo (R* x (0,7)), k=1,2.

Moreover, 0 < up < M for some M independent of §, and

uy € Cis (5 x (0,T)) N Chs. (Rs x (0,T)) N Crs (- x (0,T)) .

4. H. Li and X. Wang, Nonlinearity, 2017

Xingri Geng (NUS)
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EBCs for the system
Derivation of EBCs

Theorem
For any fired T >0, and k = 1,2, let

Then (u1,uz) — (v1,v2) in C ([0,T], L} (R?)) x C ([0,T], L}, .(R?)) as
0 — 0, where (vi,v2) is the solution of the effective system

o1 — di1Aug = T11)1(1 — V1 — b11)2), T € R,y 7é 0,t >0,
Opvg — daAvy = roua(1 —ve — bovy), x € R,y #0,t >0,
(01’02)('%"3/70) = (u1,07u270)(x7y)’ ($7y) € R27

with the EBCs listed below.
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EBCs for the System

Derivation of EBCs

Case 1. 5 — Oasd — 0.

Asd —0 Y =0 Y € (0,00) Vi = 00
v, dv”
Br€l0i00) | G =Sk =0 ————-— - -
vy, ool —
v v ay ’ykjl [(Uk }
B = o0 3 = oy = 0@5 - vy = v =0
By YT vy ]

@ The dash lines mean such cases do not exist.
o v, and v; : the restrictions of vy on R% x (0,7) and R% x (0,7).

Effective boundary conditions



EBCs for the System

Derivation of EBCs

Case 2. % — ay, € (0,00) as 0 — 0.

Asd =0 Y =0 Y € (0,00) Tk = 00
Bg; _ Bgi
Be=0 Y v ______
A _
d 5k 1’€ = a (v} —vy)
vy, Br/Yer1, —
de (‘?z}; = A/kjlw o]
B/ k1, +
— j k 1r
S B —
dy, (); 7”’<t72h [ :]
*Wk-jldk/% [""k}
Bp=00 | —===—-— === vy =vf =0

Effective boundary conditions



EBCs for the System

Derivation of EBCs

Case 3. 2 — oo and 0,6® — O as 6 — 0.

Aséd — 0 Y € [0,00) Vi = 00
= T = T
o — .4 Ov, _ Ov} - _ .+ Oy v,
By =0 U =0 5 = 5k v =0, G = Sk
- +
v = v
A€ (0,00) | === ——= ovy  ovf n
i ( ay oy ) = BrOzzvy,
fp=00 | —=—==—= v, =v =0

e The condition o;6% — 0 can be removed if Z—: - 0.
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EBCs for the System

Derivation of EBCs

° jlﬁ / v jf /7 the Dirichlet-to-Neumann mapping.
e For H € (0,00) and smooth g on R, define

le[g] = ‘IJY(JT,O) and JQH[Q] = \IJY(:‘C?H)v
where V¥ is the unique solution of

Uyy +Wure =0, RX (OaH)a
V(z,0) =g(x), Y(z,H)=0.

@ Moreover,

«7100[9] = }}Eﬂoole[g] = (—am)l/2 g, j2oo[9] = I}i_r)noong[g] =0,

where (—8,5)"? g is the fractional Laplacian of order 1/2.
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EBCs for the System

Effect of EBCs

Consider the Lotka-Volterra competition diffusion system :
(9tU1—A’L)1:U1(1—’U1—b1U2), xeR,y7é0,t>0,
O — dAvg = rva(l — vy — bovy), z € R,y #0,t>0,
[v1] = 0, [(v1)y] = —2a1 (V1) 2, rzeR,y=0,t>0,
[v2] = 0, [d(v2)y] = —2a2(v2) 2z, reR,y=0,t>0,
(v1,v2)(z,y,0) = (vio,v20)(x,9),  (w,y) € R?,
where
o [v1] = (x,0+,t) —v1(x,0—,1t);
y:
@ dr >1,b1,b2 € (0,1) and aj, a9 € (0,00) with a; < ag;
o the initial value (v, v90) satisfies
0 <wi < 1,v10 #0,

0 <wg < 1,090 Z O,
v10, V209 are compactly supported.
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EBCs for the System

Effect of EBCs

If no competition effect, the Fisher-KPP equation with a Wenztel-type
boundary condition (can seen as an EBC) reads as

ov—Av=v(l—-v), zeRy#0,t>0,
v =0, vy = —2av,,, zeR,y=0,t>0,
U($7y70) :UO(:an)v (ﬂj‘,y) GRQ‘

o This model was derived by Li and Wang?.

@ The spreading speed and shape was studied by Chen, He and
Wang 6.

5. H. Li and X. Wang, Nonlinearity, 2017
6. X. Chen, J. He and X. Wang, ARMA, 2023
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EBCs for the System
Effect of EBCs

Theorem (Chen, He and Wang)
For each v € (0,1),

Am o€ Dl @ey =0, im [lo(,8) = Hlze e =0,

where Q¢(t) = R2\Q(t) and Q(t) = tQ(1) := {(tx, ty)|(z,y) € Q(1)}.
Moreover,
Q1) = {(z, y)l¢"(z,9,1) <1}

and

2 (gt
*(z,y,t) := mi { }
Cayt) =it o
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EBCs for the System
Effect of EBCs

Figure — Asymptotic Spreading Shape Q(1)
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EBCs for the System

Effect of EBCs

2
a2 2 \\x( Ra(0)
/(1) R
! b 0, .
: 0 /2
\\Bz(o)
-2

e R,(0) : the asymptotic propagation speed along angle 6 ;
. 2

(] 00 = arcsin ﬁ

e (1) is called the asymptotic expansion shape :

0, (x,y)eQ°1),

li t oyt t) =
g, vt v ) {1, (2,9) € Q).
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EBCs for the System

Effect of EBCs

Theorem

@ There exist 1, X9 C R? such that
(1) ¥1 C Qg (1) C oy
(13) For each small v > 0, the following spreading results hold :

lim sup (Ju1] + |v2]) =0,

t=005e ((1+0)t)

lim sup (Joi| + |v2 = 1]) = 0,
=00 (1—v)t)\B1 (A +)t)

lim sup (o1 — k1| + |v2 — ko|) =0,
t=00% (1-v)t)

where (k1 kg) = (% %) 5= (1= b1)Qa, (1), D2 = Qa, (Vr).

a. X. Geng and H. Huang, preprint, 2023
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Future Works

e EBCs involving the fractional Laplacian of any order. Suppose

A(z)n(p) = od(x)*n(p), A(z)s(p) = pd(x)*s(p),

where a is a constant ; d(z) is the distance of z onto 92 ; p is the
unique projection of z on 0€2, and s(p) is an arbitrary tangent
vector at p on 0f). Then A(x) is degenerate at the boundary 9f2.

D

Figure — Q = Q; U Q5. Q is fixed.
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Future Works

@ Apply the idea of EBCs to the wave equation and the Schrédinger
equation, which can provide a physical understanding of the effects
of the layer.

e Study the propagation speed for the Fisher-KPP equation on the
upper half plane with the boundary condition involving fractional
Laplacian of any order.

o Consider the propagation speed for the Fisher-KPP equation on
the whole plane with multiple roads, on which a Wentzell-type
boundary condition is imposed to enhance the speed.
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Publications

Q@ X. Geng, Effective boundary conditions arising from the heat
equation with three-dimensional interior inclusion, Comm. Pure
Appl. Anal., 22 (2023), 1394-1419.

@ X. Geng, Effective boundary conditions for heat equation arising
from anisotropic and optimally aligned coatings in three
dimensions, arXiv preprint arXiv :2301.13657, (2023).

@ X. Geng, Effective boundary conditions for the Fisher-KPP
equation on a domain with 3-dimensional optimally aligned
coatings, arXiv preprint arXiv :2307.10429, (2023).

Q@ X. Geng and Y. Wang, Fractional Laplacian boundary condition as
a singular limit of problems degenerating at the boundary, in
preparation.

@ X. Geng and H. Huang, Asymptotic spreading of competition
diffusion systems with an effective boundary condition on a road, in
preparation.
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