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Motivations : Turbine Engine Blades

Coatings may be Anisotropic : anisotropy for TBC is caused by the
fashions in which the ceramic “YSZ”(yttria-stabilized zirconia) is
deposited on the blade :

o W,

(Picture taken from J.R. Nicholls K.J. Lawson, A. Johnstone, D.S.
Rickerby, 2002)

ng (SUSTech) Effective boundary conditions



Motivations : Nature Reserves

Distribution of phytophthora root and collar rot of alders along main

rivers and streams in Bavaria. The small map above shows the location
of Bavaria within Germany.

— Phytophthora
disease of alders
— No disease records

(Picture taken from M. Blaschke and T. Jung, 2004)
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ations : cell
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Figure: E. coli cell; membrane thick and diameter ratio 1:500; red-headed
molecules are phospholipids




Motivations :

Common features :

@ Domain contains a thin component ;

e Diffusion tensors on different components are drastically different.
Issues :

@ The multi-scale in size and different diffusion tensors lead to

computational difficulty ;

o It is hard to see the effect of the thin component ;

Resolution :

@ Think of the thin component as widthless surface and impose
"effective boundary conditions"(EBCs).
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e In 1959, Carlaw and Jaeger, in their classic book Conduction of
Heat in Solids, first derived EBCs formally ;

e In 1974, rigorous derivation was initiated by Sanchez-Palencia to
study the “interior reinforcement problem" for elliptic and
parabolic equations with a thin diamond-shaped inclusion layer ;

e In 1980, Brezis, Caffarelli and Friedman studied the elliptic
problem in both interior and boundary reinforcement cases;

e In 1987, Buttazo and Kohn studied the case of thin layer of
oscillating thickness;

"
o Lots of follow-up work on elastic equations, electromagnetic
equations, etc;
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Mathematical model

Figure — Q = Q; U Qs. The layer Qs is uniformly thick with thickness § and
I'(=0Q,) € C2. Q is fixed and 9Q — T'as § — 0.
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Mathematical model

For any fixed and finite T" > 0, consider

ur — V- (A(z)Vu) = f(z,t), (x,t) € Qr=2x(0,T),
u=0, (x,t) € Sp =002 x (0,T), (1)
u = ug, (x,t) € Q x {0}

where € is fixed, ug € L2(Q2) and f € L?(Qr). A(x) is given by

A($):{ kINXN7 SCGQI
(aij(z))Nxn, ©€8Q;s

(2)

where k > 0 and (a;j) nx N is positive-definite. Moreover, u satisfies the
transmission conditions in the weak sense

6U1
— = A(x)Vus-n on 0f2
on ( ) o 1
where n is the unit outer norm vector on 9€ ; u1 and ug are the
restrictions of u on ©; x (0,7) and Qs x (0,7).

u] = ug, k
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Optimally Aligned Coatings

Figure — Q = Q1 U Qs.

e The notion of optimally aligned coatings ! is motivated by
applications in physics, ecology and cell.

e Optimally aligned coatings : for any = € )5, the normal vector
n(p) is always an eigenvector of A(x).

1. S. Rosencrans and X. Wang, STAM J. Appl. Math, 2006
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Curvilinear coordinates

NG

Q

Figure — An illustration of the curvilinear coordinates (p,r).

In the curvilinear coordinates (p, ),
x=p+rn(p), Ve Qs,

p— projection of x onto 92 ; r— distance from x to 0€2;.
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Curvilinear coordinates

Coatings in 3D

There are two assumptions of A(z) in Q.
e Case 1. A(z) has two identical eigenvalues in the tangent
directions, i.e.,

A(z)n(p) = on(p),  A(x)s(p) = ps(p), (3)
where p is the unique projection of = on 9, and s(p) is an
arbitrary tangent vector at p on 98 ; (o, 1) = (o(9), u(0)) are two
corresponding eigenvalues.

e Case 2. A(x) has two different eigenvalues in the tangent
directions, namely, 00 = I'; x T'9, and A(x) satisfies

A(z)n(p) = on(p),
A(z)T1(p) = a1(p), (4)
A(x)T2(p) = pat2(p),

where 71,79 are two orthonormal eigenvectors of A(z) in the
tangent plane.
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EBCs in 3D

Case 1

Theorem

Assume A(x) is given by (2) and (3). Suppose

. O .
}%g—ae [0, 00] and gl_r)r(l)au—’ye [0, oo].

If u is the weak solution of (1), then as & — 0, u — v strongly in
C([0,T); L?(S2)), where v is the weak solution of the effective equation :

Ut_kAv:f(xat)a ("B?t) EQ1 X (OaT)v (5)
v(x,0) = uo, x € 0y,

v

Xingri Geng (SUSTech)
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EBCs in 3D

Case 1

subject to the EBCs on 021 x (0,T) :

Asd—0 H $—=0 ¢ = a € (0,00) % — 00
op—0 -0 k3L = —av v=10
e 0 k2L =y kv = g/ =0

o=y € ( ) OQ) an. ’YJD [ﬂ] an 'YJD [7)] v
ol — 00 VF'U:O, ‘V[‘U:O, v=0
K fanl g_:i =0 fanl(kg_: +av)dz =0
Remarks :

e Vrv =0 means v is a constant in z but may depend on t;
o J g is the Dirichlet-to-Neumann mapping ;

e Jp° is the fractional Laplacian.

Effective boundary conditions
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EBCs in 3D

Dirichlet-to-Neumann map

In particular, for smooth g defined on 9§21, and H € (0, 00),
jg[g] = \IJR(Svo): (6)
where W is the solution of

{ Uirr+ Ar¥ =0, (‘)le(O,H), (7)
U(s,0) = g(s), U(s,H) = 0.

Moreover, J, g is linear and symmetric, and its explicit formula can be

given in eigenfunctions of the Laplace-Beltrami operator —Ar, from
which

T = fim T8 = ~(-An)"% )
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Weak solution

We say that u is a weak solution of (1), if u(zx,t) € V21760(QT) and it
holds that

Alu, &
=— /Quo(x)ﬁ(:v,O)dx + / (A(z)Vu) - VE —ués — fédtdr  (9)

Qr
=0

for any £ € Wzlol(QT) satisfying { =0 at t =T.
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A priori estimates

Lemma (First order estimates)

(7) max/uz(x,t)d:v+ Vu - A(x)Vudzdt
te(0,7] Jo Qr
<O(T)( / uwddr + [ fPdzdt);
. or (10)
(74) max t/ Vu - A(x)Vu(z, t)da:—i—/ tuZdadt
te[0, T Qr

<C(T)( /Q uddz + g fAdxdt).
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A priori estimates

Lemma (Second order estimates)

Suppose I' € C and f € L*(Qr) with ug € L?(). Then, for any fized
to > 0, the weak solution u of (1) satisfies the following inequalities :

/T/ w(Aru)? + o(Viu)? < 0(1) + 0(2) + 02
to JQs u

g
I

). (A1)

Lemma (Higher order estimates)

Let m > 2 be an integer and o € (0,1). Suppose that 02 € C™T* and
f e cm—2te(m=2+2)/2(Q, % [0, T))(h = 1,6,2), and

aij € O ltem=1+)/2(Q, 5 [0,T)), then for any to > 0, the weak
solution u of (1) satisfies

- Cm+a,(m+a)/2) (Nh X [t07 T])

where N is a narrow neighborhood of Q1 and N = N N Qy,.
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Proof of the theorem

Main Steps :
e Step 1. Existence and uniqueness of weak solution of (1);

e Step 2. Energy estimates of the weak solution of (1) and prove
u — v strongly in C([0,T]; L?(2)) as 6 — 0;

Step 3. Show that v is the weak solution of (5) with related EBCs;
2

e Harmonic extension“ : construct a test function such that

g(sa r, t) = ¢(3, T, t) in ﬁéa

{ oYy + MAFw =0, (0» 5) (12)
Y(s,0,t) = £(s,0,1) (s,é,t)
o By rescaling, U(s, R) = ¥(s,\/p/or,t)

Step 4. Existence and uniqueness of the weak solution of the
effective equation (5) with related EBCs;;

2. X. Chen, C. Pond, and Wang, ARMA, 2012
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EBCs in 3D

Similarly, if the layer is of interior inclusion, denote

]{71, T € Ql
A($) = (aij)NxN, T e Q(j
ko, x € Qo

where k1 and ko are two positive constants independent of § > 0.

Figure — Q2 = Q1 U Qs UQy. Q and O, are fixed with I'; € C2.
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EBCs in 3D

Denote
ki, x €y,

Ao(w) = { ky, x€Q\Q.

Suppose I'1 € C?, and
lim 2 =be [0, 00], lim o = v € [0, 00], lim pud = B € [0, o).
6—0 6—0

As § — 0, u — v strongly in C([0,T]; L%(€2)), where v is the weak
solution of

vy — V- (Ag(2)Vv) = f(x,t), (x,t) € Qp,
v =0, (z,t) € S,
U = up, :L'EQ?t:Oa

subject to the effective boundary conditions on I'; x (0,7) :
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EBCs for interior inclusion in 3D

Casel. § > 0asd —0.

Asd—0 7=0 7 € (0,00) V=
_ k=0,
P70 mETei
k21 =0
€ (0, W Gy, —————— ——————
PO | Gy S = v
v rv1 = Vrve =
R . S
ki 9v — g, Ov2  f Ova — _ 5y On ’
von =Rk Rk = I p g kge) =0
Case2.%—>b€(0,oo)as6—)0.
Asd—=0 |y=0 v € (0,00) ¥ =00
ka2
@
=0 = Zﬁa ____________
B= 201
= b(vy — v1)
Wl =
B/y B/
______ 1Jq ["1]_7-72 fvo, _
B € (0,00) kz
3T ] = o)
Vr,u1 = vaz
o o
00 | ———e—__ —_____ fr,(kT_kZ on
fI‘i (k1 'Bn - b(vz - vl))




Case 3. § — oo and 06® — 0 as § — 0.

Asé—=0 |y=0 v € (0,00) Y =00
_ V1 = Vg, _ Qv _ 1. vy U1 = V2,
B=0 kl 31) = koo Bv v =2, k1 on ka an k1%2} — k2%2
V1 = v,
€(0,0) | ——==——~ —————— v .
B €(0,00) k1% — k%2 = BAr,v
U1 = V2,
ﬂ:oo ———————————— VF1U_0
Jo O = ko) =0

Remarks :

e 06% — 0 can be removed if g does not vanish as § — 0;
e Vr,v =0 means v is a constant in = but may depend on ¢;

e Ar, is the Laplacian-Beltrami operator ;

. jQH and JH are Dirichlet-to-Neumann mappings that can be

defined as 7, g ;

© =J® =—(-Ar,)/? and J5° = 0.
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EBCs for 3-dimensional optimally aligned coatings

Case 2

Suppose that T is a topological torus and A(x) is given in (2) and
satisfies (4). Let ug € L2(Q) and f € L?(Qr) with functions being
independent of §. Assume further that without loss of generality,
w1 > po. Moreover, o, 1, and po satisfy

lim 22 = ¢ € [0,1], %in(l)%:ae[o,l],
_)
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EBCs in 3D

Case 2

(i) If c € (0,1], then as 6 — 0, u — v weakly in W21’0(Ql x (0,77),
strongly in C([0,T); L2(Q1)), where v is the weak solution of (5) subject
to the effective boundary conditions :

Asd =0 | 50 2 5 ae(0,00) NS
opp — 0 g—; =0 k% = —av v =10
VoI = 1 € (0,00) | B2 = yK¥v] kR = ')fllC};/a[q:} v=0
Vrv =0, Vv =0,
oy — 00 ) ) v=>0
rae=0 Sk 4+ av) =0

Figure — EBCs on 0 for c=0
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EBCs in 3D

Case 2
(13) If c =0 and %ing)é%ul/,ug =0, then u — v weakly in
%

W;’O(Ql x (0,T)), strongly in C([0,T); L?(€1)), where v is the weak
solution of (5) subject to the effective boundary conditions :

Asd—0 £—=0 % = ac(0,00) % — 00

opr — 0 g—:;:O kg—:;z—av v=0

VT~ 71 € (0,00) | k3 = nA5[ ETEENYILD v=0
v _, < =0,

opy — 00, opy =0 Oy _ 8t _ v=0
Jr, on =0 Jr, (55 +ov) =

op1 — 0, 367:1:07 671-1:07 v=0

Vonz = 2 € (0,00) | [i, (k3% — D)) =0 I, (k% - 'yg'D;:’f/a[v]) =0
VFUI , VF'UIO,

Op1 —> 00, Ol —> 00 v e v=0
ron =0 ron=0

Figure — EBCs on 9 x (0,T) for ¢ =0
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Exotic EBCs

o KH[g](s) :== ®g(s,0), where ® is the unique bounded solution of

(I)RR + (1)5151 + 0@8252 - 07 I' x (07H)7
O(s,0) = g(s), O(s,H) =0.

o Allg](s) := ®%(s,0), where ®° is the unique bounded solution of

Pl + @, =0, T x (0, H),
0(s,0) = g(s), (s, H) = 0.
o DHIg](s2) := ®R(s2,0), where ®(s2, R) is the bounded solution of

{ Srr + Psys, =0, 'y x (O,H),
D(s9,0) = g(s2), P(s9,H)=0.
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Ongoing Work

e It is natural to find the EBC involving the fractional Laplacian of

any order.
@ Suppose

A(z)n(p) = od(x)*n(p),
A(z)s(p) = pd(z)"s(p),

where a is a constant ; d(z) is the distance of z onto 02 ; p is the
unique projection of x on J52, and s(p) is an arbitrary tangent

vector at p on 0f).

Figure - Q = Q; U Q5. Q and Q are fixed.




THANK YOU' !
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