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Figure: E. coli cell; membrane thick and diameter ratio 1:500; red-headed
molecules are phospholipids




tions : Turbine Engine Blades

Coatings may be Anisotropic : anisotropy for TBC is caused by the
fashions in which the ceramic “YSZ”(yttria-stabilized zirconia) is
deposited on the blade :
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TBC

If YSZ is sprayed on by electron beam physical vapor deposition
(EB-PVD) method, then parallel crystal columns that are
perpendicular to the boundary form ; and between these columns a
small volume fraction of elongated pores also form. (Picture taken from
J.R. Nicholls K.J. Lawson, A. Johnstone, D.S. Rickerby)
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Motivations :

Common features :

@ Domain contains a thin component ;

e Diffusion tensors on different components are drastically different.
Issues :

@ The multi-scale in size and different diffusion tensors lead to

computational difficulty ;

o It is hard to see the effect of the thin component ;

Resolution :

@ Think of the thin component as widthless surface and impose
"effective boundary conditions"(EBCs).
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e As early as 1959, Carlaw and Jaeger, in their classic book
Conduction of Heat in Solids, first derived EBCs formally ;

@ Rigorous derivation was initiated by Sanchez-Palencia in 1974, to
study Laplace equation and the heat equation with thin
diamond-shaped inclusions ;

o In 1980, Brezis, Caffarelli and Friedman studied the case of Poisson
equation ;

e In 1987, Buttazo and Kohn studied the case of thin layer of
oscillating thickness;

o Lots of follow-up work on elastic equations, electromagnetic
equations, etc;
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Fig. 1. The domain Q = QU Q, C RN consists of an isotropic body €2 surrounded by a
layer €27 of uniform thickness §
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Mathematical model

For any fixed T' > 0,

ur — V- (A(z)Vu) = f(z,t), (z,t) € Qr=Qx(0,T),
u =0, (x,t) € Sp =00 x (0,T), (1)
u = ug, (x,t) € Q x {0}

where  is fixed, ug € L?(2) and f € L?(Qr). A(x) is given by

. kINxN, r e
Ale) = { (aij(@))Nxn, = € Qo @)

where k is a positive constant and (aij) NxN 18 positive-definite.
Moreover, u satisfies

ou
up = usg, Et = A(z)Vuz-n on 09y,
on
where n = (nq,...,ny) is the unit outer norm vector on 9€;.
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Results by Li, Rosencrans, Zhang and Wang!

e Suppose a;;(z) = o(a;j(z)) with @;;(x) € C1(Q2) and ¢(d) is a
positive parameter.

e If o is bounded and lims_,g § = «, then u — v in L*(Q x [0, T7),
where v is the weak solution of

,Ut_kAU:f(xﬂf)v (.%',t) € Qr,
k:g—fl + a3, aij(z)ning)v =0, (z,t) € ST, (3)
v = Uy, reQt=0

@ A nature question : what is the effective boundary condition if
c—0asd—07

1. J. Li, S. Rosencrans, K. Zhang, and X. Wang, 2009, Proc-AMS
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Interior Inclusion in 3D

Figure.1: Q = Q; UQs U Q.

Let
k1, T €
Az) = ¢ (aij)3x3, ©€8Qs
kg, S QQ

where k1 and ko are two positive constants independent of § > 0; o is a
positive function of §; Q and Q; are fixed with I'y € C2.
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Optimally aligned condition

Optimally aligned coating? : for any = € Qg, n(p) is always an
eigenvector. In the curvilinear coordinates (s,r), x = p + rn(p) € Qs,

suppose
A(z)n(p) = on(p), A(x)s(p) = us(p), (4)

where p— the projection of x on I'y = 0€2; ; r— distance from x to 'y ;
s(p) is an arbitrary tangent vector at p on 9.

2. S. Rosencrans, and X. Wang, STAM J. Appl. Math, 2006
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Sobolev spaces

(Qr) = {u € L*(Qr) : Vu € L(Qr)};

(Qr) ={u e WQ’O(QT) : with trace 0 onSt};
Wy (Qr) = {u € L*(Qr) s e, Vu € LA(Q1)};

(Qr) ={u e WQI’I(QT) : with trace 0 onSy};
={u e Wy*(Qr) 1 u € C((0,T), L*()};
={ue ‘/21’0(QT) : with trace 0 onSr};
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Weak solutions

u is a weak solution of (1), if u(x,t) € VQI’E)O(QT) and it holds that

Alu, &
- = / uo(z)é(x,0)dx + / (A(z)Vu) - V€ —ués — fédtdr  (5)
Q

T

=0

for any & € W217’01(QT) satisfying £ =0 at t = T,
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A priori estimates

(7) max / u?(x, t)dx + Vu - A(x)Vudzdt
tel0,T] Jo Qr
SC’(T)(/ uddx + fPdxdt);
Q
Qr (6)
(74) max t/Vu A(z)Vu(x, t)dav—l—/ tutd:zrdt

t€[0,T] 7

<C(T)( /Q it | frawa)
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Higher order estimates

Lemma (2)

Suppose Ty € C® and f € L*(Qr) with ug € L*(Q). Then, for any fived
to > 0, the weak solution u of (1) satisfies the following inequalities :

/ w(Ara)? +o(Vru)? <0 +0(0) +o(t) (@
to JQs 1% 2

and

Q=

/to /Qéau <o +0(§)+0( ) (8)

Xingri Geng (NUS)
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General results?®

Theorem (X.Chen, C.Pond and X.Wang)

Let m > 2 be an integer and o € (0,1). Suppose that 02 € C™T* and
f e m—2te(m=2+)/2(Q, % [0, T))(h = 1,4,2), and

g € cm—1te(m=14+)/2(Q, % [0,T]), then for any to > 0, the weak
solution u of (1) satisfies

- Cm+a,(m+a)/2) (-/T[h X [t07 T])

where N is a narrow neighborhood of Q1 and Ny = N N Q.

3. X.Chen, C.Pond and X.Wang, Arch.Ration.Mech.Anal.(2012)
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Main results

Theorem (Geng)
¢ Denote Ag(x) = k1,2 € Q1 and Ay = ko, z € Q\Qy. Suppose T'y € C3

lim 2 =be [0,00], limod =a € [0,00],
6—0

6—0 0 (9)
(%IE)%O-M:’YE[O?OO]? %g%/lé:ﬁe[ovoo]
As & — 0, u — v strongly in C([0,T); L*(R)), where v is the weak
solution of
vy — V- (Ao(z)Vv) = f(z,t), (x,t) € Qr,
v=0, (z,t) € St, (10)

xeNt=0,

subject to the effective boundary conditions on I'y x (0,T) :

a. Xingri Geng, submitted

18 /31
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Main results

Case 1. § -+ 0asd—0.

Asd—=0 7;0 v € (0,00) v =00
ki GE =0,
B=0 kl%vd":kﬁaﬂ ____________
ko=
B €(0,00) hy 2y
Vr,v1 = Vv =0,
b oo k=0, k% =FCW], %Lg ’
- vy _ p vz vy _ _~ T T on 3
krGa =ka%k k2 T2 [v2] fr, (kl%7k2%):0
Case 2. § = b€ (0,00) as § = 0.
Asd—=0 [y=0 ~ € (0,00) v =00
kg
.
=k,
B=0 wow T TTTT T
on
= b(vg —v1)
=
n
B/ _ B/
Be(0,0) | ————— 1 S e
on —
7173 1) = 17 wa)
Vr,v1 =V, v
B=o0 |—————— ————— jr,(klgin’ki%

Jr, (k122 —b(va —v1))
. 0




Main results

Case 3. & — oo and 06° — 0 as § — 0.
Asd—0 |y= ~ € (0,00) v =00
_ U1 = V2, _ vy _ . vy U1 = U2,
PT0 hfrokly T RE TRE G-k
U1 = V2,
€(0,00) | —————~  —————— . v
A e ki3 — ka% = BAr,
V1 = U2,
/B:oo ____________ gn”:%
Jr, (kg —ka32) =0
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Exotic EBCs

Remarks :
e 06% — 0 can be removed if g does not vanish as § — 0;
e Vr,v =0 means v is a constant in  but may depend on ¢;
e Ar, is the Laplacian-Beltrami ;
o JH is called Dirichlet-to-Neumann map ;

e Lots of new and exotic EBCs emerge, including the fractional
Laplacian-Beltrami and the Dirichlet-to-Neumann mapping.
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Dirichlet-to-Neumann map

Let g(s) be a function on 9€; and V¥ is defined by

{ Uipr+Ar¥Y =0, 0091 X (O,H), (11)
\IJ(’S?O):Q(S)v \I’(SvH):g(s)'
Moreover,
jH[g] = \IIR(S7O)7 (12)
where J is symmetric for H € (0, 00) and
0 : H 1/2
J* = lim JH = —(-Ar)"2 (13)

JH can be given in eigenfunctions of the Laplace-Beltrami operator.
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Specical case : 0 =

Theorem (Isotropic case)

(i) If lims_,o § = b € [0,00] and o — 0, then

" ovy vy _ 81)2‘

Yon
(10)If lims_,o 06 = a € [0,00) and o > O(1) > 0, then

8 87)2
v = vy, ki—— o _k28 = aAr,v.

(i4i) If lims_,9 06 = oo, then

0 0
v1 =v, Vpv=0, / (k:lﬂ —k:gﬂ)ds:(),
Iy w

where v1 and vy are the restrictions of v on Q1 x (0,T) and

(Q\Q1) x (0,T), respectively.
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Proof of the theorem

Main Steps :

Step 1 : existence and uniqueness of weak solution of (1);

Step 2 : energy estimates of the weak solution of (1) and prove

u — v strongly in C([0,T]; L?(Q2)) as § — 0;

Step 3 : show that v is the exact weak solution of (10) with related
EBCs;

o Construct a test function such that £(s,r,t) = (s, r,t) in Qs,

{ Uwr'r + MAF’(/} = 07 Fl X (Oa 5)7 (14)
’(/)(8707t) = 91(5) w(saéa t) :gQ(S)
o By rescaling, U(s, R) = ¥(s,/u/or,t)

Step 4 : existence and uniqueness of the weak solution of the
effective equation (10) with related EBCs;
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Boundary layers

Two identical tangent thermal conductivity

Qy

Fig. 1. The domain € = 2 U2 C R consists of an isotropic body €2 surrounded by a
layer €, of uniform thickness 5

Theorem (Boundary case)

@ Suppose A(x) is given by (4). If u is the weak solution of (1), then as
§ — 0, u — v strongly in C([0,T]; L*(2)), where v is the weak solution
of the effective equation :

{ vy — kAv = f(xat)a (:L‘,t) €y (O’T)’ (15)

v(x,0) = u, x € 082,

a. Xingri Geng, Submitted
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Theorem (Boundary case)

subject to the following effective boundary conditions :

A6 o0 | 50 £ 0 e 0.0 oo
o0 on = kom = —ow v=0
VTR v €(0,00) | kZE =1TFR] kG =T [l v=0
o — 00 VF’U—O gFU:Q b —0

fdﬂl on fanl(k% +C¥’U)d1 =0

Xingri
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Boundary layers

Two different tangent thermal conductivity

Assume 02, is a topological torus, namely, 0y =I'; x I'y, and A(z)
satisfies

A(z)n(p) = on(p),
p) = pati(p), (16)
p) = p2ta(p),
where t1,ty are two orthonormal eigenvectors of A(x) in the tangent
plane. WOLG, suppose p1 > uo and % — c€[0,1].

e If c € (0,1], EBCs are similar as above;

o If ¢ = 0 with “2/’“ — 0, new results arise.
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Asd—=0 =0 ¢~ a€(0,00) & — o0
op; — 0 g—:’l= kar = —aw =0
VOl =7 € (0,00) | k% =mKEP] k32 =7KE ] =0
VF’U :0, VI"U:
op1 — 00 o _ 8 _ v=0
e =0 Jo(kSE + aw) =0
Figure — EBCs on 09 for ¢ # 0
Aséd—0 =0 % = a€(0,00) =
opur =0 g—z: kg;":—av v=0
/opt = m € (0,00) | k& —'ylAD [v] k8L =y AR ¥ [] v=0
=0, 7_0
61'1 —
oy — 00, oy — 0 fr, a: -0 fn (an:' av) =0 v=0
opp — 00, a_UZO 8:‘70 v=0
Vot > 1 € (0,00) | fi, (k32 = DBl =0 fi (k32 7D B]) =0
Vrv =0, Vrv =0,
op1 — 00, Oy — 00 o _ v _ v=0
I on = I én =

Figure

EBCs on 09 for ¢ =0




Dirichlet-to-Neumann map

For H € (0,00), AB[g] := ®p(s,0) and A := }}im AR where ®(s, R)
—00
is the bounded solution of

(I)RR + q>sls1 = 07 891 X (O,H), (17)
®(s,0) =g(s),  ®(s,H)=0.

Moreover, DH[g] := Up(s2,0) and D := Jim DE | where ¥(s2, R) is
— 00
the bounded solution of

{ \I’RR + \118252 - Oa I‘2 X (O,H), (18)
U(s2,0) = g(s2), Y(se,H)=0.
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Ongoing Work

field

road

field

@ Use the idea of EBCs to derive new model for other nonlinear
equations such as the Fisher-KPP equation and reaction diffusion
systems.
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